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Abstract  

This thesis presents research to build and evaluate embedding of a textual form of state machines 

into high-level programming languages. The work entailed adding state machine syntax and code 

generation to the Umple model-oriented programming technology.  The added concepts include 

states, transitions, actions, and composite states as found in the Unified Modeling Language 

(UML). This approach allows software developers to take advantage of the modeling 

abstractions in their textual environments, without sacrificing the value added of visual 

modeling.  

Our efforts in developing state machines in Umple followed a test-driven approach to ensure 

high quality and usability of the technology.  We have also developed a syntax-directed editor 

for Umple, similar to those available to other high-level programming languages.  We conducted 

a grounded theory study of Umple users and used the findings iteratively to guide our 

experimental development.  Finally, we conducted a controlled experiment to evaluate the 

effectiveness of our approach. 

By enhancing the code to be almost as expressive as the model, we further support model-code 

duality; the notion that both model and code are two faces for the same coin.  Systems can be and 

should be equally-well specified textually and diagrammatically.  Such duality will benefit both 

modelers and coders alike.  Our work suggests that code enhanced with state machine modeling 

abstractions is semantically equivalent to visual state machine models. 

The flow of the thesis is as follows; the research hypothesis and questions are presented in 

ñChapter 1: Introductionò.  The background is explored in ñChapter 2: Backgroundò. ñChapter 3: 

Syntax and semantics of simple state machinesò and ñChapter 4: Syntax and semantics of 

composite state machinesò investigate simple and composite state machines in Umple, 

respectively. ñChapter 5: Implementation of composite state machinesò presents the approach we 

adopt for the implementation of composite state machines that avoids explosion of the amount of 

generated code.  From this point on, the thesis presents empirical work. A grounded theory study 

is presented in ñChapter 6: A Grounded theory study of Umpleò, followed by a controlled 

experiment in ñChapter 7: Experimentationò. These two chapters constitute our validation and 

evaluation of Umple research.  Related and future work is presented in ñChapter 8: Related 

workò. 
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How to read this thesis  

For readers who are not familiar with UML modeling, specifically, state machine models, we 

recommend a start-to-end reading of this document. However, readers familiar with UML 

modeling can choose to skip Chapter 1 and Chapter 2. Readers interested in empirical studies can 

focus on Chapter 6 and Chapter 7. Readers familiar with Umple and interested in the 

development and architecture work can read Chapter 3, Chapter 4, and Chapter 5. 
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Chapter 1: Introduction  

The context for this thesis is a software development environment where code and model reside 

in the same artifact. It is an environment where the programming language is enhanced by 

modeling abstractions typically available to modelers in a visual environment. This approach 

effectively raises the abstraction level of todayôs modern high-level programming languages. 

Our work is part of research efforts aiming at uniting code-centric and model-centric software 

engineering with the ultimate goal of enhancing modeling practices in the software engineering 

industry. We approach this goal by incorporating modeling abstractions in textual form that 

extends, or is similar to, a programming language. In particular, we investigate the incorporation 

of UML state machines to enhance the Umple language [3]. This approach is a manifestation of 

model-code duality.  Model-code duality means that we consider both model and code to be a 

single entity with two representations. More specifically, we aim at demonstrating that graphical 

state machine modeling abstractions and their equivalent textual representations can be equally 

effective for designing and understanding systems. 

Traditional development environments treat models and code as two separate entities. Such 

approaches induce software professionals to create, edit, and manage independently two separate 

artifacts; models and code. Forward and reverse engineering for code and model is therefore 

needed to keep the two artifacts in synch.  On the other hand, if we treat models and code as a 

single entity, having two representations, we encourage the treatment of models and code as a 

single artifact (model-code duality).  The need for model-to-code and code-to-model 

transformations are then eliminated or minimized.  

A key research hypothesis we investigate is whether the core features of state machine 

diagrammatical modeling language can be effectively represented textually, in a high level 

programming-like syntax. Effective representation means that software professionals can 

comprehend, develop, and maintain software models textually in a manner suitable particularly 

to those who are accustomed to textual programming languages. In fact, developers and 

modelers will blend modeling and coding in the same development artifacts. 

Our research approach is threefold; first, we investigate and evaluate how software engineers 

generate code from models, focusing on state machine models, and we use a grounded theory 

study to understand how Umple early adopters perceive textual modeling. Iteratively, we use the 

empirical research findings to drive the second part of this research, which is experimenting with 

state machine enhancements to the existing Umple research platform. And finally, we 

empirically evaluate our findings by means of conducting controlled experimentation.  
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The goals of our research activities are: 1) Understanding how the current tools handle code 

generation for state machines.  2) Empirical assessment of the use of textual modeling in 

software development.  3) Utilizing the findings of goals 1 and 2 to drive activities that aim at 

incorporating state machine modeling in a textual modeling environment to generate effective 

models and code. 4) Evaluating our approach.   

1.1 Research Questions 

Our research activities are guided by the following questions: 

1.1.1 RQ1: 

To what extent do software developers use state machines to model system behavior and 

specifications?  What are the major factors behind that level of adoption? 

The origins of state machines can be traced back to the notion of ñcalculating machineò, 

introduced by Charles Babbage in 1834 [4].  The mathematical model, since then, has been 

continuously improved and refined.  We discuss the history and development of state machines 

in the section ñHistory of State Machinesò on page 26.  

State machines are now a well-established modeling approach and are incorporated in the UML 

modeling specification.  State machine models are supported in a significant number of software 

modeling tools and there is considerable support for automated code generation from state 

machines diagrams. However, our research findings indicate a low level of adoption of modeling 

notations in the software industry [5] and specifically for state machines [6]. Our personal 

observation of modelers, and our survey of capabilities of modeling tools, discussed later, 

indicate that adoption of state machines is particularly low.  Reasons for the low adoption of 

state machines models may include: 

1. State machine support by software modeling tools is poor. 

Other than in certain high-end real-time modeling tools, the available software modeling 

tools tend to have little support for state machine analysis and code generation; and some do 

not support basic modeling of state machines. In such a situation, lack of proper support in 

the available commercial and open source modeling tools will inevitably have a negative 

impact on the adoption of state machines.  

2. Typical state machine diagrams are represented using a mixture of diagrammatical modeling 

elements and textual elements. 

Elements like states and transitions render themselves suitable for diagrammatical 

representations, while elements like actions and guard conditions are more suited for textual 
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representation. In most software modeling tools, developers have to switch from visual 

context to textual context to accomplish their modeling tasks. 

3. There is little correspondence between state machine diagrams and the generated code. 

There are multiple design patterns for code generated from state machines.  Our survey of 

generated code from a number of leading open source and commercial software modeling 

tools, discussed later, indicates the existence of several distinct design patterns with 

variations in the generated code that go beyond implementation specifics. This creates a 

wider gap between models and code that further induces developers to treat code and models 

as separate artifacts that need to be independently managed.  This is discussed in ñChapter 2: 

Backgroundò. 

4. Integration of state machine notation with other object oriented concepts tends to be poor. 

State machine notation is poorly integrated with other related UML modeling concepts. The 

overwhelming majority of tools support state machine notation in a standalone fashion; 

where the state machine diagrams do not integrate smoothly with other modeling notations 

such as class diagrams. For example, they do not generally support refinement of state 

machines over inheritance. 

5.  Awareness of state machines as a modeling notation is low among software developers. 

Software professionals may choose not to use state machines because they are not familiar 

with their concepts or applications. There is relatively little guidance on building applications 

that incorporates state machines. 

1.1.2 RQ2: 

Can the gap between state machine diagrams and code be minimized by incorporating core 

state machine abstractions in a high-level programming-like language? 

Software modeling tools treat state models and code as two separate artifacts. Updates in the 

visual model have to be synchronized to the corresponding code, and vice versa. Software 

developers therefore need to make updates in both the visual model and the textual code, further 

complicating development tasks. A common scenario is for developers, at some point during the 

development process, to stop updating the visual model and rely only on editing the generated 

textual code, which renders models out of date and obsolete. 

By incorporating state machine core concepts in a textual language that supports in-line native 

code, the model is maintained as long as the code is maintained.  
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1.2 Hypothesis and Approach  

The following is the hypothesis we are investigating in this thesis:  

H 1: Software developers can comprehend software more effectively if state machine 

abstractions are embedded within the code. 

Existing software modeling and code generating tools imply that both the visual and textual 

contexts are in use, and are required, for system development using state machine diagrams. Our 

investigations focus on incorporating state machine concepts in a textual modeling language, and 

allow for in-line native code embedding. We anticipate significant reduction in the gap between 

state models and code, enabling developers to effectively treat both visual and textual code as a 

single entity. Our evaluation indicates that, for simple tasks, this approach improves 

comprehension when compared to a typical high level programming language.  The evaluation is 

discussed in Chapter 7: Experimentation on page 151. 

This hypothesis is investigated throughout our research activities.   

1.3 Research Activities  

We have conducted the following research activities and used the findings to address our 

research questions and verify our hypothesis. 

I. Continuously explore how the Umple research platform is perceived by end users. Prior 

to our research, Umple already supported core class diagram features including 

associations and attributes. Understanding how users perceive textual modeling of class 

diagram elements helped guide our research activities and the implementation of state 

machine features in a way that is best suited towards developersô usability needs and 

cognitive patterns. We carry out this task by conducting a grounded theory study of 

Umple. Details of the study and findings are presented in ñChapter 6: A Grounded theory 

study of Umpleò. 

II . Explore the design and implementation of state machine concepts in the Umple platform. 

Our understanding of the prevailing modeling practices and modeling tools has helped 

guide our research activities in adding state machine features to Umple. To accomplish 

this task, we explored existing related technologies and research. 

III . Implement an interpretation of the latest UML state machine specifications and 

incorporate that implementation in the Umple platform. The implementation covers both 

simple and composite state machines. 

IV. Evaluate our approach using a controlled experiment. Participants are presented with 

samples of models and code using a visual UML notation, a typical high level 
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programming language, and Umple. Participants are then asked a series of questions that 

aims at measuring their level of comprehension. The study suggests a positive added 

value of Umple technology. 

V. To accomplish the empirical study, it is required to present participants with a compiler 

and environment that reflects Umpleôs vision, and that is of quality matching their 

expectations and helps participants focus on core research questions, rather than 

limitations in the platform. Towards that objective, we built a sophisticated textual editor. 

1.4 Thesis contributions  

The contributions of this research and the publications based on this thesis are presented 

in this section. The contributions are listed in order of importance. References to thesis 

sections discussing the contribution are given.  

¶ Adding state machine abstractions in the Umple language 

The Umple technology now supports state machine abstractions. These abstractions are 

supported in the core Umple, and hence, are reflected in all Umple based tooling, such as 

the Umple online [3]. Implementing such abstractions required: 

- Defining new textual syntax to represent UML state machine modeling elements. 

- Integrating and extending the syntax into the Umple technology. 

¶ Implementing semantics for state machine abstractions 

The semantics of the state machine abstractions are part of Umple core technology. The 

state machine abstractions are implemented by means of code generation of high level 

programming language. Umple distinguishes between two types of state machines; 

simple state machines (Chapter 3), and composite state machines (Chapter 4 & Chapter 

5). This contribution entails the following sub-contributions: 

- Code generation for state machines that is similar to what software developers would 

write as implementation for a state machine model (Chapter 3 & Chapter 4). 

- A novel approach to implementing composite state machine semantics (Chapter 5). 

¶ Investigation and analysis of the latest UML state machine specifications. 

We introduce a deep investigation of the UML state machine specifications exposing 

some of the undefined semantics of state machines.  We also analyze areas of the 

specifications where there are two or more alternative interpretations.  Umpleôs 
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implementation provides clarifications and a working solution to some of these 

ambiguities. (Chapter 4) 

¶ Empirical evaluation of the Umple technology (Chapter 7). 

A controlled experiment has been designed and conducted to evaluate the effectiveness of 

the Umple technology. This experiment is the topic of Chapter 7: Experimentation.  

¶ Open-sourcing the Umple technology 

Umple is now open for developers and contributors. Umple source is hosted in the 

Google code repository [7]. 

¶ Reporting on an application of Grounded Theory research methodology.  We used a 

grounded theory study to learn about the community of Umple users and utilize their 

feedback to enhance our research direction and priorities. (Chapter 6) 

1.4.1 Publications based on this thesis 

All publications based on this thesis are presented in this section. The first author is the 

main author. 

1. ñCombining Experiments and Grounded Theory to Evaluate a Research Prototype: 

Lessons from the Umple Model-Oriented Programming Technologyò 

Omar Badreddin, Timothy C. Lethbridge. To appear in ICSE Workshop on User 

Evaluation for Software Engineering Researchers (USER), 2012. 

2. ñModel-Driven Rapid Prototyping with Umpleò 

Andrew Forward, Omar Badreddin, Timothy C. Lethbridge.  In Software: Practice and 

Experience Journal, 2011. 

3. "A study of applying a research prototype tool in industrial practice" 

Omar Badreddin and Timothy C. Lethbridge. 2010. In Proceedings of the eighteenth 

ACM SIGSOFT International Symposium on Foundations of Software Engineering 

(FSE '10- Doctoral Symposium). ACM, New York, NY, USA, 353-356. 

http://dx.doi.org/10.1145/1882291.1882345 

4. "Umple: A model-oriented programming language" 

Omar Badreddin. In Proceedings of the 32nd ACM/IEEE International Conference on 

Software Engineering - Doctoral Consortium - Volume 2, 2010, pp. 337--338. 

http://dx.doi.org/10.1145/1810295.1810381 



24 
 

5. "Teaching UML Using Umple: Applying Model-Oriented Programming in the 

Classroom" 

Timothy C. Lethbridge, Gunter Mussbacher, Andrew Forward, Omar Badreddin. In 

Proceedings of CSEE&T 2011, co-located with ICSE 2011, , pp. 421-428. 

6.  "Umplification: Refactoring to Incrementally Add Abstraction to a Program" 

Timothy C. Lethbridge, Andrew Forward, Omar Badreddin. In proceedings of the 17th 

Working Conference on Reverse Engineering http://dx.doi.org/10.1109/WCRE.2010.32. 

2010, pp. 220-224. 

7. "Umple: Towards Combining Model Driven with Prototype Driven System 

Development" 

Andrew Forward, Omar Badreddin and Timothy C. Lethbridge. In proceedings of the 

21st IEEE International Symposium on Rapid System Prototyping 

http://dx.doi.org/10.1109/WCRE.2010.32. 2010. 

8. ñChallenges and opportunities in applying research prototypes and findings into 

industrial practiceò 

Omar Badreddin, Tim Lethbridge, Hisham El-Shishiny, Margaret-Anne Storey, Andrew 

Forward. CASCON '10 Proceedings of the 2010 Conference of the Center for Advanced 

Studies on Collaborative Research. ACM. doi:10.1145/1923947.1924021. 

9.  ñPerceptions of Software Modeling: A Survey of Software Practitionersò 

Andrew Forward, Omar Badreddin, and Timothy C. Lethbridge. (2010) 5th Workshop 

From code centric to model centric: Evaluating the effectiveness of MDD 

(C2M:EEMDD), Paris, June 2010, http://www.esi.es/modelplex/c2m/papers.php 

In addition, we have published the following technical report. A conference paper has been 

submitted and is being considered for publication. 

10. ñAn Empirical Experiment of Comprehension on Textual and Visual Modeling 

Approachesò.  

Omar Badreddin and Timothy C. Lethbridge. Technical report number TR-2011-03. 

Accessed 2011. http://www.eecs.uottawa.ca/eng/school/publications/techrep/2011/ 

1.5 Outline  

Presented here is a short summary of each chapter. 

http://www.esi.es/modelplex/c2m/papers.php
http://www.eecs.uottawa.ca/eng/school/publications/techrep/2011/
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Chapter 2: Background 

This chapter presents background research, a brief introduction of Umple state machines, and a 

survey of state machine code generation approaches. 

Covered in this chapter are existing technologies in state modeling and code generation 

approaches from state machines. 

Chapter 3: Syntax and semantics of simple state machines 

Our approach of representing state machines abstractions in Umple is presented in this chapter. 

The chapter also covers the design decisions and compromises that we undertook throughout the 

research study. 

Chapter 4: Syntax and semantics of composite state machines 

Nested and concurrent states concepts syntax and semantics are explored in this chapter. The 

chapter also explores aspects of the latest UML standard and how it relates to our approach. 

 Chapter 5: Implementation of composite state machines 

A novel implementation of composite state machine semantics is presented in great detail in this 

chapter.  

Chapter 6: Grounded theory study of Umple 

We conducted a series of interviews with users of the existing Umple language, compiler and 

environment. We analyzed the interviews using the grounded theory approach and used the 

results as guidance to our research and experimental development.  

Chapter 7: Experimentation 

Experiment goals and objectives, metrics, design, results and analysis are presented in this 

chapter. 

Chapter 8: Related Work 

We present in this chapter selected on-going research activities that bear similarity to our 

research.  We focus on highlighting aspects of the existing research that influenced our direction, 

and position our research with respect to existing work. 

Chapter 9: Summary and conclusion 

This summarizes our research activities and gives an outline of future research directions. 
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Chapter 2: Background  

This chapter presents background research, a brief introduction of Umple state machines, and a 

survey of state machine code generation approaches. 

2.1 History of State Machines  

The mathematical foundations of state machines can be traced back to the Turing machines that 

were first described by Alan Turing in 1936 [8].  A Turing machine is composed of a tape, head, 

a table, and a state registry.  The mathematical foundation of Turing state machines has been 

formalized in the Church Turing thesis that informally states that if an algorithm (a procedure 

that terminates) exists then there is an equivalent Turing machine. 

The history of state machines is graphically summarized in the timeline in Figure 1.  

 

Figure 1: History of state machines 

A Turing machine is a type of a state machine.  At any point of time, the Turing machine is at 

one of a finite number of states.  In modern terms, reading a character on the tape may, or may 

not, trigger a transition to a new, or the same, state.  Any Turing machine can be effectively 

modeled using modern state machine diagrams. It is therefore that the Turing machineôs 

mathematical model laid the grounds for more elaborate models that resembles todayôs notion of 

state machines, most notably are Mealy and Moore machines [9].  Mealy machines output 

depends on the current state and on the input (transition oriented state machine), while Moore 

machinesô output depends only on the state (state-oriented state machine).  Therefore, the same 

model implemented using Moore machines usually result in more states compared to the same 

model implemented using Mealy machines.  For example, Wagner et al [10] present a 
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microwave implementation that results in a Moore machine with 7 states, compared to only 5 

states using Mealy machine.          

2.1.1 The Evolution of State Machines 

A significant factor behind the development of the concept of state machines was the 

understanding of the practical significance of state machines.  A prominent step towards that 

understanding is the work of Borger [11].  He realized that abstract state machines can solve 

some central problems that had faced the ISO Prolog standardization committee for years.  After 

a number of unsuccessful attempts, a few engineers from IBM, Quintus, Bim, Interface, 

Siemens, demonstrated the benefits of state machines by highlighting the ability for supporting 

changing designs.  State machines have also been significantly utilized in hardware design.  

Since the practical significance of state machines became widely accepted by researchers and 

practitioners, there have been a number of case studies and experiments that explore the full 

potential of this concept [12].  This takes us to the late 1980s and early 1990s that mark the 

origin of UML state machines diagram. 

Specification and Description Language (SDL) 

SDL has emerged from the communication domain and it is mainly used in the modeling of real 

time and communication systems [13]. SDL emerged from a study at the International 

Telecommunication Union (ITU) in 1968. The first SDL standard was produced in 1976. SDL 

has both graphical representation (SDL/GR) and a phrase or physical representation (SDL/PR) 

[14-16]. SDL is further discussed in ñComparing Umple and SDLò on page 175. 

Harel Statecharts 

Mealy and Moore machines suffered from a limitation; the machine was either in one state or in 

another state.  The machine is never in two states at the same time.  Harel [17] introduced the 

concept of an and-state.  This allowed the state machine, or the statechart, to be decomposable 

into lower states, or sub-states, of a high level state.  Those sub-states need not be sequential; 

Harelôs proposed statecharts allows sub-states to be concurrent.  In addition, Harel defined 

communication and synchronization methods in which these sub-states can communicate with 

each other. Douglass [18] has provided a well-defined enumeration of these communication and 

synchronization methods.  In 1988, Harel presented StateMate [19], a working tool that 

encapsulates those concepts. 

The Booch Method 

Five years after the introduction of StateMate, a new enhanced method, based on Harelôs 

statecharts, was introduced.  Grady Booch developed an Object Modeling Language and 

methodology that became widely used in object-oriented modeling analysis and design [20].  

Boochôs focus was on states and events.  Events could be defined within a state model, or could 
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be external to the system under design.  The property ñStateKindò determines whether the state is 

a normal state, or a special state (initial state, end state).  The method also supported stateRegion 

that can be either sequential or concurrent.  Events are attached to transitions that can have 

conditional expressions that are commonly called guards today.  

The Object Modeling Technique  

During the same period of time, another methodology was being developed by Rumbaugh, 

Blaha, Premerlani, Eddy and Lorensen, named Object Modeling Technique (OMT) [21].  OMT 

supported a dynamic model that was primarily composed of states, transitions, and actions.  The 

dynamic model captures control information without regard for what the operations act on or 

how they are implemented.  It was conceptually very similar to the Boochôs state machines. 

The Unified Modeling Language (UML) 

The development of UML began in 1994 when Booch and Rumbaugh began their work on 

unifying the methods.  They were later joined by Ivar Jacobson, the author of OOSE (Object-

Oriented Software Engineering) method.  The three authors created UML v0.9 in October of 

1996 [22]. 

Realizing the strategic importance of standardizing UML, a number of organizations joined 

forces to form the OMG (Object Management Group).  This effort resulted in UML v1.0 in 

1997.  In the same year, the standard was enhanced and UML 1.1 was released.  The current 

specification adopted by OMG today is UML 2.2 [23] that supports 13 different diagrams under 

three categories; structure, behavior and interactions diagrams.  Our state machine 

implementation in Umple builds on the latest UML specifications, although we have not 

rigorously followed UML for pragmatic reasons, and because we want to be free to explore new 

ideas. 

Current Developments 

OMG, along with a number of industrial partners, is developing new standards that enhance 

UML executability; UML Action Language (UAL) and Action Language for Foundational UML 

(ALF).  These two standards are at an early stage of development.  We elaborate on UAL and 

ALF in Chapter 8: Related work.      

2.2 Umple state machine example  

We illustrate Umple state machine basic syntax by briefly introducing a state machine example.  

A much more complete demonstration of Umple state machine features is presented in Chapter 

3: Syntax and semantics of simple state machines.  Figure 2 illustrates a state machine of a car 

transmission system. 
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Figure 2: State machine of a car transmission 

As shown in Figure 2, the car transmission system is comprised of a two-level nested state 

machine.  The transmission starts in Neutral state.  While in Neutral state, the state machine 

responds to four events; namely, selectFirst, selectDrive, selectSecond, and selectReverse events.  

Each event triggers a transition to a new state.  For example, the transition selectSecond triggers 

a transition to Second state. 

While in Second state, the transmission system responds to two events; reachThirdSpeed and 

dropBelowSecondSpeed that trigger transitions to Third state and First state respectively.  

Transition to Third state and First State are guarded.  The guard driveSelected has to evaluate to 

true for the transition to take effect.  If the guard driveSelected evaluates to false, the transition is 

inhibited. 

Next, we illustrate how this state machine is represented in Umple.  

Driving 
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class  Car  {  

  transmission   {  

    Neutral  {  

      selectrevers e - > Reverse;  

      selectSecond - > Second;  

      selectDrive - > Driving;  

      selectFirst - > First;     

    }  

    

    Reverse  {  

       selectNeutral - > Neutral;  

    }  

    Driving  {  

       selectNeutral - > Neutral;  

       selectSecond - > Second;  

       se lectFirst - > First;  

  

      First  {  

         reachSecondSpeed [driveSelected] - > Second;  

       }  

        

      Second  {  

         dropBelowSecondSpeed [driveSelected] - > Second;  

         reachThirdSpeed [driveSelected] - > Third;  

      }  

        

      Third  {  

         dropBelowThirdSpeed - > Second;  

  

}  }  }  }  

Listing 1: Umple state machine syntax 

Listing 1 illustrates Umple state machine syntax for the state machine illustrated in Figure 2. 

Line 1:  declares a class named Car. 

Line 2: a class attribute named transmission.  Because there is no declared type, Umple defaults 

the attribute in Java to be an Enum and in Php to be a string.   

Line 3 to line 8:  declares a state Neutral.  The state is an initial state (Umple sets the first state 

defined to be the start state), and has 4 unguarded transitions to Reverse, Second, Driving, and 

First states. 

Line 13 to line 30: Creates a state Driving that contains several nested substates; First, Second, 

and Third.   Some of the transitions between First, Second and Third states are guarded 

transitions. 

Line 19:  defines a transition from state First to state Second.  The transition is triggered by the 

event reachSecondSpeed.  This is a guarded transition.  The event reachSecondSpeed will not 

trigger the transition unless the value of the guard driveSelected evaluates to true.  Umple users 

have two ways to declare a guarded transition.  The transition can either be written as  

event [Guard] -> StateName  
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or alternatively, the transition can be written as  

[Guard] event -> StateName 

Transition may have optional actions.  The syntax for the transition with action is as follows: 

EventName / ActionName -> StateName; 

All actions have to be preceded by the character ñ/ò.  The guard can be placed anywhere before 

the transition characters ñ->ò. 

The next section presents a survey and an investigation of existing state machine code generation 

approaches. 

2.3 Code Generation from State Machines  

In this section, we give a survey of existing approaches to code generation approaches from state 

machine models.  This survey guided our decision-making process with regard to generating 

executable artifacts from Umple models.  We present Umple code generation and our decision 

points in section ñState Machine Design Decisionsò on page 60. 

 

Different design approaches for code generation from state machines have been presented in the 

literature [24]. Adamczyk brings together a number of implementation approaches for state 

machines, and evaluates them based on the flexibility of the implementation, problem domain 

and user expectations. Adamczyk presents an implementation of a traffic light state system and 

analyzes the ease with which the system can be maintained.  Briefly, the implementation patterns 

discussed in this work are grouped based on the state machine element concerned; state, event, 

transition and action. For example, the work presents three ways to implement a state: 

enumerated values, methods and classes. An action on one extreme can be a single statement, or 

a complex computation that can be encapsulated within a dedicated class.  Adamczyk classified 

action implementation under three categories, unstructured code, methods, and classes. 

Similarly, transitions can be implemented using tables, state-driven transitions, and classes. 

 

A similar study, [1], investigates extensions to the state pattern formulated as advice to 

developers implementing state machine behavior. 
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Figure 3: Extensions to state pattern [1] 

As shown in Figure 3, the state object represents the core of the state pattern. Here, the state is 

encapsulated as an object. In the pattern of State-Driven Transitions, the state object is 

responsible for the handling of the transition. On the other hand, the Owner-Driven Transitions 

pattern represents the case where the owning object is responsible for the implementation of the 

transition.  The State Member pattern deals with whether data members should be placed in the 

owning object or in the State Object. The Pure State is a pattern where the state object has 

nothing but a state-specific behavior.  

 

Dyson explains how different patterns suit different types of state machines. For example, if the 

developer is faced with a large number of state objects, he can use the pure state pattern to cut 

down on the number of objects required. 

 

We identify state machine patterns by investigating existing tools that support state machine 

code generation. We achieve this by conducting a survey and analyzing the code generation from 

state machines as exhibited in the existing open source and commercial tools.  Our findings 

indicate the existence of distinct design characteristics for state machine code generation. We 

identify and group the design approaches under three categories; the in-class pattern, the 

multiple-class pattern, and the extended multiple-class pattern.  Of those three design 

approaches, none is an all-time winner, as each alternative is more attractive under certain 

circumstances.  In this section, we present the three main design approaches for code generation 

from state machines, as well as variations of those approaches.  While laying out the design 

alternatives, we make reference to the latest commercial and open source tools and the design 

each has adopted. 

 

While executing state machines and automated code generation have been reported in the 

literature for some time now, a surprising number of state-of-the-art commercial and open source 

tools do not support state machine code generation. According to Gartnerôs reports [25] IBM 

Rational Software Architect (RSA), as of 2007, is the top leading commercial object-oriented 

analysis and design tool.  For open source tools, Gartner in another report [26] puts ArgoUML as 

the most active UML modeling tool, and StarUML as the most active open source tool that 

supports UML 2.0.  RSA, ArgoUML, and StarUML support code generation from Class 

diagrams, but provide only limited support for code generation from state diagrams.   
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There are a number of other tools that support code generation from state machines.  Telelogic 

Tau [27], Mentor Graphicsô BridgePoint [28], Borland Together for Eclipse [29], RSA RealTime, 

and SmartState [30] are some leading commercial tools that support automated code generation 

from state machines.  On the open source side, FSMGenerator [31], Concurrent Hierarchical 

State Machine (CHSM) [32], HUGO [33], and FSM Framework offer that support. 

 

For the modeling tools that support code generation from state machines, we identified 

significant variations in the design approach followed by the existing modeling tools 

(summarized in Table 2 and Table 3 on page 40).  Even for the tools that adopt the same design 

pattern, each follows a variant of it.  This wide variation can be attributed to one or more of the 

following factors: 

1. State machine elements may or may not be first-class object-oriented elements, which 

gives flexibility in the implementation of those elements.  For example, states can be 

implemented as simple data attributes, or instances of classes. 

2. The existence of a number of design approaches and the lack of comprehensive 

understanding of which design approach is most effective. 

3. Certain application domains or platforms bring their own considerations, for example, 

embedded applications or performance-sensitive systems have specific needs.  

In order to move towards a comprehensive understanding of state machine code generation 

design alternatives, we present the three main design approaches, and their variations as 

exhibited in the literature and the existing tool implementations.  Our analysis evaluates 

candidates of those design approaches and aims at laying the foundations for more uniformity in 

state machine code generation. 

2.3.1 Design Approaches 

In this section, we present the three design approaches, and their variations.  We make reference 

to commercial and open source tool implementations whenever possible.  We illustrate the 

alternative design approaches by referring to the simple state machine in Figure 4. 
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On

Off StandBy

e1 [g1] / a1

e1 [g2] / a1

e2 [g4] / a2

e2 [g2] / a2

 

Figure 4: An Example State machine  

The state machine in Figure 4 represents simple functionality present in a device.  The device 

can be in one of three states, On, Off, and StandBy.  Each state has an entry and exit action. Each 

transition has a guard condition and a corresponding transition action as illustrated.  Event ñe1ò 

triggers the transition from state Off to On, and the same event triggers the transition from state 

On to Off, depending on which state is active.  Similarly, event ñe2ò triggers the transition from 

state On to state StandBy, and the same event will trigger the transition from state StandBy to 

state On. For simplicity, we assume guard conditions to be a Boolean variable, and all entry and 

exit actions to be a function call.  Events are triggered by an action external to the system. 

 

This example is intentionally simple, as it does not include nested states, concurrent states, joins, 

or forks. The simplicity in this example enables us to consistently implement the example and 

generate code from a wide range of available commercial and open source tools.  We employ 

two additional, and more complex, examples in our assessment and analysis (illustrated in Figure 

9: Nested example and Figure 10: Concurrent example). 

2.3.2 In-class pattern 

In this design approach, the whole state machine behavior is implemented in a single class.  The 

single class includes code to implement the core state machine behavior, typically by means of 

nested switch statement, if statements, or a transition table.  The class includes implementations 

for functions representing all entry, exit, and transition actions, as well as guard 

implementations. 

 

Variations.  The core behavioral logic is implemented as a switch statement, or by implementing 

a state transition table as in Mentor graphics BridgePoint, or a nested if statement as in Telelogic 

Tau. The use of the deprecated goto statement is reported in the literature [1], however, there is 

no evidence that goto statements are implemented in any of the existing open source or 

commercial modeling tools.  Goto statements suffer from weak readability and maintainability of 

the generated code, but may provide for a faster execution time.  
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Transitions in the implementation code are comprised of statements to call exit actions, checking 

for guard conditions, transition actions, deactivating old state and activating the new state.  Such 

code is typically embedded within the switch statement or nested if statements.  Telelogic Tau 

groups such code in a single method ñleave()ò that would execute all statements for affected 

transitions which results in a more modular and readable generated code. Umple adopts a similar 

implementation of the leave method.  

 

Another variation of the single-class approach is the use of a code library that implements 

specific functions that are called by the state machineôs single class. For example, the function to 

execute a transition from one state to the other can be implemented in a separate library.  This 

approach is adopted in Telelogic Tau. 

2.3.3 Multiple-class pattern 

In this approach, a separate class is generated for each state that inherits from a State superclass.  

The superclass defines entry and exit actions that are then implemented in each state class.  This 

approach is adopted in HUGO [33, 34], Telelogic Rhapsody [27], and SmartState.  This design 

approach is similar to the State design pattern presented in [35] . For the example presented in 

Figure 4, adopting this design approach results in the class diagram shown in Figure 5. 

 

Variations. This design pattern allows for a larger number of variations than the in-class pattern.  

In addition to the variations related to the implementation of the state machine behavior, there 

are variations related to when objects are created and destroyed.  Objects representing states can 

be created only when that state is active.  Another alternative is for all state objects to be created 

as soon as the state machine becomes active. Yet another alternative, implemented in Telelogic 

Rhapsody, is the use of an additional helper class that implements the state machine behavior. 
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Figure 5: Multiple -class design pattern 

2.3.4 Extended multiple-class pattern 

In this approach, object orientation is taken even further, with separate classes used to implement 

actions and, in some variations, guards [35-37].  This design pattern provides for some 

centralization of state machine elements.  In this approach, all actions, entry actions, exit actions, 

and guards are grouped together in dedicated classes.  Following this design pattern to 

implement our example results in the class diagram in Figure 6. 

 

 

Figure 6: Extended multiple-class design approach 
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Variations.  Variations for this design pattern are related to what elements of state machines are 

grouped together in a dedicated class.  For example, [38] Tomura implements a separate abstract 

class for Entry Action, Do Action, Exit Action, and Guard condition. Other variations may 

implement transitions in a separate class. When a dedicated class implements the state machine 

transitions, the transition object will include statements to call any exit action from the current 

active state, deactivate current active state, check any guard condition, call any transition action, 

call any entry action into the new current state, and update the current state.  This design 

approach is referred to as Owner-Driven transition [1].  If transitions are not grouped into a 

transition class, then state objects are responsible for transition from one state to the other.  This 

design approach is referred to as State-Driven transition. 

2.3.5 Alternatives within design patterns 

In addition to the different design approaches, there are implementation specifics that can be 

adopted within any design pattern previously presented. Those implementation specifics relate to 

how states are represented and stored, as well as how actions, and guards are realized. 

How states are represented 

In the case of the in-class approach, states are represented by attributes.  Those attributes can be 

strings, or constant values, or simply integer attributes as implemented in SmartState. 

 

In the case of the multiple-class and extended multiple-class design approaches, states are 

represented as instances of classes, with one class per state.  The current active state is tracked as 

a reference to the current state object.  Telelogic Rhapsody creates objects for all states up front, 

which stay active in memory as long as the state machine is executing.  Since in many systems, 

there is likely to be a number of states machines active at the same time, upfront object creation 

has performance significance especially since object creation can be expensive, particularly in 

embedded systems, or systems with a large number of states.  Gurp and Bosch [36] recommend 

the Flyweight pattern [35] that allows objects to be shared among multiple contexts. 

How guards are realized 

There are three ways to implement guard conditions.  The simplest way is the use of a Boolean 

attribute or a Boolean expression to represent the guard condition.  Alternatively, guard 

conditions can be implemented as Boolean functions.  

 

Semantically, guards prevent transitions in response to an event whenever the guard value is true.  

This behavior can be semantically equivalent to implementing ñignore eventsò for each guarded 

transition.  An ignore event is a new event that is triggered when the original event is triggered 

and the Boolean expression is true. Semantically, this is equivalent to assigning a guard 
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condition and original event to the transition.  This guard implementation approach is adopted in 

Mentor Graphics BridgePoint tool.  We illustrate this design alternative further in Figure 7. 

 

State1 State2

Event e1 [G] 

 

Figure 7: ignore event 

Letôs assume that when in State1 the state machine responds to Event e1 by triggering a 

transition to State2.  In such a situation, the state machine implementation will check for the 

value of the guard óGô before executing the transition to State2.  If the value of óGô is false, the 

transition is inhibited. 

The óignore eventsô design alternative does not use a guard condition.  However, to implement 

the same behavior of the state machine in Figure 7, we delete the transition shown and replace it 

with a transition with a new event (say e2) that is triggered whenever e1 occurs and G is true.  

How actions are represented 

There is a general convention in tools and in the literature to implement actions as functions. 

However where the actions are implemented has a significant impact on complexity, 

maintenance, and performance, as we discuss later on when we assess the design patterns. 

 

Actions can be implemented in each state class, as in the multiple-class pattern.  Or, as in the 

extended-multiple-class pattern, actions can be grouped together in a designated action class.  

There are two arguments for grouping actions in the same class.  The same arguments apply for 

variations that group guards, transition functions, and entry and exit actions in the same class.  

The first argument for grouping actions is to facilitate reuse and maintenance.  The second 

argument is to maintain the separation between the state machine behavior (represented by 

actions) and structure (represented by the class hierarchy). 

 

On the other hand, in object-oriented best practices, classes should include functions that 

manipulate the behavior of the instances of that class.  Grouping all actions in a single class 

breaks this convention.  We summarize the impact of grouping actions in a single class in Table 

1.  We further discuss the three design patterns and analyze their complexity, maintainability, 

and performance in the next section. 
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Table 1: Variations of implementation of Actions 

 Grouping actions in the same class Distribute actions on state classes 

Applicable in 

design 

In-class and extended-multiple class 

design approaches. 

Multiple-class design approach. 

Standard object 

oriented design 

principles 

Breaks object oriented design principle 

of distributing responsibilities so that 

each object implements functions that 

manipulates its own data.2  

In accordance with object oriented 

principles. 

Reuse of actions 

among multiple 

states and state 

machines 

Enhances reuse and facilitates 

maintenance by grouping all actions in 

the same entity. 

Actions are distributed on the classes of 

each state, making reuse less intuitive and 

harder to implement. 

Number of 

objects 

State machine implementation results 

in an overhead of one additional action 

object. 

No additional objects created for actions. 

Actions 

representation 

State machine actions have first class 

representation in the generated code. 

Actions have no first class representation 

in the generated code (implicit 

representation). 

Performance There is evidence of performance 

degradation. 

Distributing actions seems to reduce the 

computational overhead. 

Summary of tools design approaches 

Table 2 summarizes a number of leading tools and the designs they incorporate.  Out of the six 

commercial tools and four open source tools we examined, three adopt the in-class design 

pattern, three adopt the multiple-class pattern, and one adopts the extended-multiple-class 

pattern.  Three tools had little to no code generation support for state machines.  Table 3 presents 

design variations related to the state machine core behavioral implementation, representation of 

states, and implementation of guard conditions. 

 

                                                

2 In the case of the in-class design approach, the whole state machine is considered to be a single entity, and is 

therefore implemented in a single class.  In this case, there is no violation of standard object oriented design 

principles, however, the power of object orientation is not harnessed. 
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Table 2: Tool design approaches 

  Design Pattern Little to no 

support  In-Class Multiple -

Class 

Extended-

Multiple -Class 

C
o

m
m

e
rc

ia
l 

Telelogic Rhapsody  X   

Mentor graphics BridgePoint   X  

Telelogic Tau X    

SmartState  X   

RSA and RSM    X 

RSA RealTime X    

O
p
e

n
 

S
o

u
rc

e 

StarUML     X 

ArgoUML     X 

HUGO  X   

FSMGenerator X    

FSM Framework [36]  X   

 

 

Table 3: Design variations implementation 

 If 

Statement 

Switch 

Statement 

Table 

Driven 

Representation 

of states 

Guard Conditions 

FSM framework    X   

BridgePoint   X  Ignore actions 

Tau X    User defined expressions 

SmartState  X  Integer attribute  

Rhapsody  X  Upfront State 

object creation 

 

FSMGenerator X   String attribute  

RSA RealTime  X  String Attribute3  

 

Discussion of the three design approaches 

Figure 8 illustrates the different design approaches and their variations.  Some of the variations 

apply to all three design alternatives, like ñcore behavioral logicò and ñGuard implementationò.  

Other variations are applicable only to a subset of the design alternatives, such as ñobject 

creationò, which is only applicable to multiple-class and extended-multiple class design 

alternatives. 

                                                

3 RSA RealTime also creates an Index for states to identify parent state in the case of nested states. 
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Figure 8: summary of design approaches and variations 

 

The three design approaches, and the design variations, illustrate the gap between the model and 

the executable code that exists in state machine modeling.  This gap induces the modeling tools, 

as well as developers, to manage the modeling artifact and the executable code as two separate 

entities. Making changes to one artifact will inevitably require some kind of synchronization; 

otherwise the two artifacts quickly become out of synch. 

 

The in-class approach results in a smaller number of classes, although the number of lines of 

code inside that single class may be large, particularly if the state machine has many states or 

actions, or responds to a large number of events.  At the other extreme, the extended multiple-

class approach is assumed to provide for better reusability and maintenance, since all events, 

actions, and guards are grouped in their respective classes. Gurp [36] argues that the maintenance 

and evolution of the generated code from state machines, when actions are scattered, is very 

complex.  By grouping actions in a dedicated class, maintenance tasks become less complex.  To 

illustrate the complexity of the generated code, we applied a candidate of each design approach 

to three state diagrams with varying complexity. The simple example is illustrated in Figure 4.  

The nested example, illustrated in Figure 9, is comprised of four states, with two nested states.  
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The state machine in Figure 10 implements two concurrent states and is comprised of 5 states, as 

well as join and merge elements. 

 

 

Figure 9: Nested example 

 

Figure 10: Concurrent example 

 

 

Table 4 presents a comparison between the three design approaches and their corresponding 

generated lines of code and number of classes. 
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Table 4: Design approach comparison 

 #of 

States 
Least number of Lines of Code4 Least Number of classes5 

In-

Class 

Multiple -

Class 

Extended-

Multiple Class 

In-Class Multiple 

Class 

Extended-

Multiple 

Class  

Simple 3 78 114 106 1 4 6 

Nested 4 115 147 142 1 5 7 

Concurrent 4 140 182 180 1 8 106 

 

The number of lines of code for the in-class design pattern is consistently the smallest, while 

there is no significant difference in the number of lines of code for the multiple-class and 

extended multiple-class design patterns.   Table 5 presents a summary of the generated code from 

Telelogic Tau and Mentor Graphics BridgePoint.  Tau implements a variation of the in-class 

design pattern where they make use of a superclass to implement some of the functionality of 

state machine behavior.  The reported number of lines of code corresponds only to the in-class 

lines of code.  On the other hand, BridgePoint implements a variation of the extended-multiple 

class design pattern, with generated classes for actions, events definitions, the state-events matrix 

that implements state machine behavior, as well as a header file for each class.  BridgePoint does 

not support Java code generation; the reported numbers are based on a generated C code.  There 

is no support for guard conditions; therefore, all guards are ignored when generating the code 

using BridgePoint. 

                                                
4 Measured by the number of Java code lines to implement the state machine behavior. 

5 Measured by the least number of classes in each design approach.  In some variations of a specific design approach, the number 

of generated classes may be larger. 

6 Variations in this design approach may result in a larger number of classes generated. 
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Table 5: Generated code from commercial tools 

Lines of Code #of 

States 

Telelogic MentorGraphics 

Tau Bri dgePoint 

Simple 3 100 1507 

Nested 4 958 N/A7 

Concurrent 7 N/A9 N/A10 

 

Assessment of the three design approaches based on Complexity, maintainability, and 

performance 

The fundamental question of which design approach is óbetterô is not easy to resolve, as evident 

by the diverse approaches and variations adopted by the commercial and open source tools 

available today.  We base our assessment on three factors; complexity, evolution, and 

performance.  Similar factors have been adopted for evaluating automated code generation [39]. 

Complexity 

We measure complexity of the generated code by Lines of Code (LOC), number of generated 

classes, and the separation of structure and behavior of the state machine.  LOC, despite its 

apparent simplicity, is arguably the most effective measure for complexity [40].  The number of 

generated classes increases the complexity of the generated code.  Separation of structure and 

behavior is the main benefit of the extended multiple-class design approach.  As with cohesion 

[41], the separation of structure and behavior results in systems that are less complex. 

 

LOC analysis.  As illustrated in  

 

Table 4, the in-class design pattern consistently resulted in a smaller number of LOC.  On 

average, code generated with the in-class design pattern is 74% smaller than the code generated 

with the multiple-class design pattern and 77% smaller than the code generated with the 

extended multiple-class design pattern. 

 

                                                
7 This number ignores code in header files, as well as code comments. 

8 Telelogic does not support transitions into an inner state.  The reported lines of code hence implement a model that is 

semantically different. 

9 Telelogic supported orthogonal nested states. 

10 BridgePoint does not support concurrent states. 
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Number of generated classes.  

 

Table 6 illustrates the generated classes for the three examples. 

 

Table 6: Number of classes for different design approaches 

#of Classes #of States Design 

In-

Class 

Multiple -class Extended-Multiple class 

Minimum  Up to Minimum  Up to 

Simple 3 1 4  5 6 11 

Nested 4 1 5 6 7 12 

Concurrent 7 1 8 9 10 15 

 

The in-class design pattern always results in the same number of classes for the three examples.  

For the multiple-class pattern, the number of classes is equal to the number of states, but can 

have an additional helper class.  For the extended multiple-class approach, the total number of 

classes is between three and eight more than the number of states.  This variation depends on 

whether there are separate classes for entry, exit, and do actions, as well as guards, and 

transitions.  

 

Separation of structure and behavior.  The correspondence between the structure of the state 

machine and the generated code is more evident in the multiple-class and the extended-multiple 

class design patterns; this is because states are represented as classes.  While in the case of the 

in-class design pattern, this correspondence is less evident.  From the state machine behavior 

perspective, actions are distributed on all states in the multiple-class design pattern, while they 

are grouped in a single class in the extended-multiple class design pattern. 

However, since actions are implemented as functions, they are cohesively grouped together 

within a single class in the case of in-class design pattern.  A developer trying to understand the 

behavior of the system will know exactly where to look for actions within the single class 

implementation. 

Maintainability  

Maintainability, or evolution, from the perspective of this analysis, is the ease with which the 

code of a state machine generated system can be maintained and modified.  Ideally, evolution 

and maintenance tasks should be performed on the state machine model and the code 

regenerated.  However, in many cases models are either lost, or they are not updated and quickly 

become obsolete, then maintenance tasks are performed on the generated code itself.  We 

measure maintainability by the complexity of adding a new transition to a new state, and 
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measuring how much code needs to be edited, and where.  Programmatically, to add a new 

transition to a new state, the following micro tasks are required: 

1. Edit core state machine behavior (whether it is switch, nested if statement, or table 

driven) 

2. Create Entry, do, and exit actions 

3. Create transition from existing state to the new state. 

4. Create transition from new state to existing states, if any. 

For the in-class design pattern, the developer will accomplish all micro tasks by editing the same 

single class.  On the other extreme, in the extended-multiple class design pattern, the developer 

needs to edit the core state machine class and the one or more action classes. 

Performance 

We implemented the simple and the nested examples using the three design approaches; in-class, 

multiple-class, and extended-multiple class.  The core state machine behavior was implemented 

by using a nested switch statement, and all guards were implemented as Boolean variables.  In 

the case of in-class design pattern, states are represented by an integer variable.  For the multiple-

class and the extended multiple-class patterns, the current state is identified by a reference to the 

current state object.  The code for the three design patterns was manually written in Java. 

 

We evaluate the performance of the same 1 million state transitions, taking readings every 100th 

transition.  The sequence of events was randomly generated.  Each event is assigned equal 

probability of occurrence so that the number of occurrences of each event is probabilistically 

equal.  Because the number of events is vast (1 million) in comparison to the number of states (3 

states in the simple example), each state was entered and exited at least once.  All guards were 

implemented on each transition, but were assigned a fixed true value.  Since we are not 

evaluating different guard implementations, assigned fixed true value to guard conditions ensures 

that the performance analysis results reflect the design pattern of the state machine 

implementation. 

 

The concurrent example incorporates concurrent states that have implementation specifics 

beyond the scope of analysis of the design approach, and we therefore exclude it from the 

performance analysis.  Our findings are summarized in Figure 11.  The multiple-class design 

pattern results in the best performance, only slightly better than the in-class design pattern.  

While the extended multiple-class design pattern implementation exhibited the worst 

performance.  Because the extended-multiple-class design pattern implements separate objects 

for guards and transitions that have to be referenced in response to each event, this results in an 

additional computational overhead and hence relatively lower performance. 
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Figure 11 illustrates the results of our performance analysis for the three design approaches.  The 

y-axis represents time, and the x-axis represents the number of transitions. We note that our 

results did not give a straight line. We believe this is due to memory exhaustion or some similar 

operating system phenomenon. 

 

 

Figure 11: Performance analysis of the three design approaches 

Our results are in accordance with the performance analysis reported in [41].  In their work, they 

analyzed a variant of the multiple class design pattern (that they named state pattern), and a 

variant of the extended multiple-class design pattern (their proposed framework).  Their 

performance analysis concludes that the state pattern is more efficient if a lot of small transitions 

take place, as was the case in our performance analysis.  They also conclude, however, that this 

difference becomes negligible if the actions on the transitions become more computationally 

intensive. 

2.4 Summary  

The history and evolution of state machines was briefly surveyed in this chapter. We also 

introduced Umple`s modeling approach for simple state machines. We presented a survey of 

state machines code generation where we identified three code generation patterns: 

1. In-class pattern, where the entire state machine code is generated within a single class. 

2. Multiple class pattern, where each state is generated in a separate class. 

3. The extended multiple class pattern is where additional state machine elements are 

implemented in a separate class. For example, in this pattern, all state machine actions 

can be implemented in a separate class. 

We have drawn these patterns from studying existing modeling tools, both commercial and open 

source. We made an assessment of each code generation pattern. This work laid down the 

Extended multiple-class 

In-class 

Multiple-class 

      100,000                  500,000                    1,000,000  transitions 



48 
 

foundation for our experimental development of state machines in the Umple platform. As we 

demonstrate in the next chapters, we have chosen the In-class code generation pattern for Umple.  

Reasons for this choice are discussed in the next chapter in section ñDesign decisionsò on page 

62. 
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Chapter 3: Syntax and semantics of simple s tate machines 

State machines in UML have two types of states, simple states and composite states.  Simple 

states are the focus of this chapter.  Composite states, the topic of the two next chapters, can be 

nested states (substates) or concurrent states. 

In this chapter, we present the incorporation of state machine features into Umple. We present 

Umple state machine syntax and features related to simple states. We also present the language 

grammar, meta-model, and various design decisions we made. 

This chapter focuses on the following aspects of state machines: 

1. Designating an attribute for control by a state machine. 

2. Creation of an arbitrary number of states and transitions. 

3. Support of guard conditions on transitions. 

4. Support of transition actions. 

5. Support of automated code generation for Java and PHP. 

6. Support of inline implementation of guards and actions. 

7. Support for reusable state machines. 

8. Support for timer based events. 

The next section introduces an example showing Umple state machine features. 

3.1 State Machines in Umple: The Basics 

An attribute in Umple can be declared to be a state machine. This means that its value is 

determined by various events that may occur.  When an attribute is controlled by a state machine, 

Umple does not generate a public setter for that attribute since updates to that attribute will be 

controlled by the state machine itself. 

States: Any string or integer attribute can have an unbounded number of states.  Listing 2 

illustrates an example. 
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c lass  CourseSection  {  

  status  {  

    Planned  { //state contents, events, transitions and actions  }  

     

    Closed  { //state contents, events, transitions and actions }  

  }  

}  

Listing 2: Attribute controlled by a state machine in Umple 

This defines the string attribute status to be controlled by a state machine.  This state machine 

has two states, Planned state and Closed state. 

Umple by default makes the first state to be the start state.  In our example, Planned state is the 

start state.  Any state that does not have any outgoing transitions is considered an End state. 

We now can define the state machine behavior by adding events, guards, transitions, and actions.  

Events:  From a state machine perspective, events occur outside of the system; the system only 

reacts to those events.  Umple, therefore, implements event-handling functions.  These event-

handling functions execute steps to check the current state of the state machine, and call any 

entry and exit functions, and executing the transition action, if such an action exists. 

Because Umple supports native code, the developer can write any function that could trigger any 

Umple event.  This is a powerful feature in Umple because it gives the developer the ability to 

call Umple events at any time.  However, it is the developerôs responsibility to make sure that the 

event function does not have any side effects. 

Before we show an example of Umple event syntax, we first introduce transitions. 

Transitions: Umple supports syntax for state transitions.  Umple also supports reflexive 

transitions, where the new state is the same as the start state. 

The next example adds a transition to our state machine. 

status  {  

  Planned  {  

    registerStud ent - > Closed ;           

  }  

   

  Closed  { }  

}  

 

The example above defines an event registerStudent that triggers a transition to the state Closed.  

Umple events are implemented as functions that return a Boolean value.  If the event results in 

triggering a transition, true is returned, otherwise, false is returned. 
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Guards:  Guards may prevent a transition from occurring.  If the guard evaluates to true, the 

transition is triggered, otherwise, the transition is inhibited. 

Umple uses the square brackets [ ] which is the same as the UML syntax for defining guards.  

The following code shows the addition of a guard to a transition. 

[authorized] registerStudent - > Closed;  

This guard means that only if the value of authorized is true, that the transition is triggered.  Note 

that authorized has to be a Boolean variable, a Boolean expression, or a Boolean function.  The 

guard syntax could also be written as: 

[authorized == true] registerStudent - > Closed;         

 

The code inside the square brackets has to match the native language code.  So, if the userôs 

intention is to generate Php, the user has to use Php syntax, and if the userôs intention is to 

generate Java, the user has to follow the syntax for Java. 

Umple also supports any function call within the square brackets, as long as the function returns 

a Boolean value.  This enables developers to create guards once, and reuse them in as many 

transitions as they wish. 

Umple also supports guards to appear syntactically after the event.  This can enhance readability 

and usability when there are many transitions and the developer wants the person reading the 

code to more readily notice the names of events.  For example, the transition above can be 

written as: 

registerStudent [authorized] - > Closed;  

 

Actions: Umple supports the three types of state machine actions, transition actions, entry 

actions, and exit actions. 

A transition action is an action that is associated with a state machine transition.  An entry action 

is an action that is executed upon transiting into a state.  Similarly, an exit action is an action that 

is executed upon transiting out of a state. 

The following shows a transition action. 
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registerStudent /{sendNotification();} - > Closed  

 

This transition reads as follows: when the event registerStudent occurs, execute the action 

sendNotification( ) and transit to state Closed.  In this example, the transition action is a function 

call. 

Umple also supports actions to be any native code, or block of code.  For example, the following 

transition when triggered prints ñtransitionò on the console: 

registerStudent /{System.out.println("transition") ; } - > Closed;  

 

As with guards, allowing actions to be any function call means actions can be reused across 

transitions, state machines and classes.  In addition, the same action can be reused as entry or exit 

actions. An Umple user can create a method to call multiple actions and/or events. This approach 

enhances the usability of the language by grouping together a number of actions and events 

within the same method. 

The following is an example of an entry and exit action for the state Closed. 

Closed  {  

  entry  /{ System.out.println( ñentry action ñ) ; };      

  exit  /{ System.out.println( ñexit action ñ) ; };  

}  

 

This creates one entry and one exit action for the state Closed.  This means, whenever we transit 

into Closed, the entry action is executed, and whenever we transit out of Closed, the exit action is 

executed.  Similar to transition actions, entry and exit actions can also be function calls, and can 

be reused in the same way. In addition, it is possible to have more than one entry action or exit 

action associated with the same state. 

Do Activities: Actions take a negligible amount of time to execute. Do activities, on the other 

hand, represent a longer-running computation while in a state. In languages such as Java that 

support it, a thread will be started to execute the do activity. This allows the state machine to 

'stay live' and be able to respond to other events, even while the do activity is running. A 

transition out of a state terminates the do activity. 
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The following is an example of a do activity in the Closed state. 

Closed {  

  do {doThisContinuouslyWhileClosed();}  

}  

 

3.2 Grammar  defining the syntax of Umple state machines  

The grammar to parse state machine elements has to be embedded within the grammar that 

parses classes, attributes and associations.  This is because the parsing process has to recognize 

the tokens for class and state machines at the same time. The grammar is published as part of the 

Umple Google Code project [7] and can be found in the following directory: 

svn/trunk/cruise.umple/src/umple_state_machines.grammar   
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R1 classContent  : [[ comment]] |...| [[ stateMachine ]] | [[ extraCode ]]  

R2 associationClassContent :[[ comment]]|...|[[ stateMachine ]]|[[ extraCode ]]  

R3 stateMachineDefinition  :  

statemachine  [ name] { [[ state ]]* }  

R4 stateMachine  : [[ enum]] | [[ inlineStateMachine ]]  

R5 inlineStateMachine  :  

[ name] { ( [[ comment]] | [[ state ]] )* }  

R6 enum :  

[ name] { } | [ name] { [ stateName ] (, [ stateName ])* }  

R7 state  :  

[ stateName ] { ( [[comment]] | [=changeType: - |*]? [[ stateEntity ]] )* }  

R8 stateEntity -  :  

[= - || ] | [[ transition ]] | [[ entryOrExitAction ]] | [[ activity ]] | 

[[ state ]]  

R9 transition  :  

[[ guard ]] [[ eventDefinition ]] - > [[ action ]]? [ stateName ] ; | 

[[ eventD efinition ]] [[ guard ]]? - > [[ action ]]? [ stateName ] ; | 

[[ activity ]] - > [ stateName ]  

R10 eventDefinition -  :  

[[ afterEveryEvent ]] | [[ afterEvent ]] | [ event ]  

R11 afterEveryEvent -  :  

afterEvery  - ( [ timer ] - )  

R12 afterEvent -  :  

after  - ( [ timer ] - )  

R13 action  :  

/  { [** actionCode ] }  

R14 entryOrExitAction  :  

[=type: entry | exit ] / { [** actionCode ] }  

R15 activity  :  

do  { [** activityCode ] }  

R16 guard  :  

[ [** guardCode ] ]  

Listing 3: Umple state machine grammar 

3.2.1 Overview of the notation 

The grammar notation that Umple uses is slightly different than the standard EBNF notation. 

This is because the Umple language is unique in the way it supports the embedding of arbitrary 

native languages. At the time of writing, Umple supported Java, Ruby, and Php. Additional 

language support is underway. This means that an Umple user can choose to embed a wide 

variety of native code within Umple. The grammar and the parser therefore need a mechanism to 

be able to identify blocks of code and accept them as is without parsing. However, the grammar 

notation developed for Umple resembles as much as possible the EBNF. The following 

discussion clarifies Umple grammar notation.  
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Managing rule names 

The Umple grammar introduces the minus character (ñ-ò) which is a special control character 

that controls whether the rule name is added to the tokenization string or not. The minus 

character is useful when a rule acts as a place holder to help modularize the grammar. By adding 

the minus character to the end of the rule name, it removes the rule name from the tokenization 

string. For example, in rule R8 in Listing 3, the rule name stateEntity is not added to the 

tokenization string. This helps keep the tokenization string for states relatively short and simpler 

for testing and debugging. 

Non-terminals 

The Umple grammar supports two types of non terminals, simple non-terminals, and rule-based 

non-terminals. A simple non-terminals is a sequence of characters that is non-whitespace and is 

delimited by the next symbol as defined in the grammar. 

inlineStateMachine : [name] { ( [[state]] )* } 

In this example, name is a non-terminal followed by a curly bracket, a space, or a new line 

character. 

The rule-based non-terminal notation uses double square brackets. In the example above, state is 

a rule-based non-terminals, which is defined in R7 in Listing 3. 

Managing code blocks 

As we explained, the tokenization process must be able to óskip-overô code blocks without any 

strict parsing rules. This special need for Umple is the main reason why Umple grammar does 

not use Antlr [42]. The grammar notation supports two methods to accomplish this task. 

entryOrExitAction  : [=type:entry|exit] / { [ *actionCode] }  

This rule defines that an entry or exit action is defined by the terminal entry or the terminal exit, 

followed by the terminal ñ/ò, followed by a curly bracket. The *actionCode will match 

everything until a new line character is reached. This is very useful for Umple because it means 

that the action code can be specified in any target language, and allows the grammar to stay 

unchanged as new languages are added. 

Note that this means that an action code must be in one line. This is an undesired limitation. 

Umple grammar therefore supports the following notation. 
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entryOrExitAction  : [=type:entry|exit] / { [**actionCode] }  

When the action code is preceded by two stars ñ**ò, the rule will match everything, including a 

new line character until the next character sequence is matched. This means that action can span 

multiple lines with no limitation on the sequence of action code itself. 

The following explains Umple grammar rules for parsing state machines that are in Listing 3. 

R1 and R2 define that Umple classes and Umple association classes can have state machines as 

attributes. 

R3 defines a state machine by the keyword statemachine followed by a name followed by a 

number of states between curly brackets. This is used to declare a state machine independently of 

a class. 

R4 defines two types of state machines in Umple that can be embedded in classes; enum, and 

inline state machine.  

R5 and R6: Inline state machines are defined as a name followed by a number of states (R5). 

Enum state machines (R6) are empty state machines, or state machines with only states (with no 

transitions or actions). These are logically equivalent to an enumerated data type. The only way 

to change the state is to set the state using an assignment statement. 

R7 and R8 define a state. Notice that a state contains state entities, which themselves can be 

states. This supports the implementation of nested and concurrent states discussed in Chapter 4: 

Syntax and semantics of composite state machines. 

R9 defines Umple state machine transitions. 

R10, R11 and R12: Umple defines three event types; afterEvery event, and after event, and the 

generic event. The first two are timed events, causing a transition to be taken after a certain 

amount of time has lapsed. The main difference between afterEvery and the after events is that 

the timer automatically resets itself and starts counting again. While in the case of after event, it 

is a simple timer that triggers the event after a specific amount of time. 

R13 and R14: Umple supports three types of actions; transition action, entry action, and exit 

actions. 

R15: This defines do activities, that start a long-running and interruptible thread to perform some 

lengthy computation, for example. 

R16: Guards, similar to state machine actions, can be defined in any native language. 
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Notice that the grammar is agnostic about composite state machines. Concurrent states and 

nested state machines are handled at the meta-model level. This is discussed in greater details in 

Chapter 5: Implementation of composite state machines. 

3.3 Umple state machine meta -model  

The Umple state machine metal-model is similar to the UML 2.2 meta-model. There are 

elements that are in our meta-model that are not in the UML 2.2 meta-model specifications [23].  

We introduce our meta-model first, and then discuss the similarity and differences with the UML 

2.2 specifications. 

We built the state machine meta-model using Umple itself.  Figure 12 illustrates the Umple state 

machine Meta model visually, and using Umple syntax. 

 

Figure 12: Umple meta-model 
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As shown in the meta-model, UmpleClass can be associated with many state machines.  This is 

because each Umple class can have multiple, or no, state machines.  A state machine, however, 

may, or may not, be associated with an UmpleClass.  This is because Umple supports standalone 

state machines; state machines that are not yet associated with any Umple Class. Umple uses a 

novel approach for handling composite states (nested, concurrent, forks, joins, history and deep 

history states) that requires only minimal meta-model dependency. This approach is the topic of 

the next chapter. Because Umple supports reusing of actions and guards; guards have a 1-to-

many relationship with transitions.  Similarly, a state can be associated with many Actions. 

The differences in attributes with UML 2.2 are summarized in Table 7. Some of the differences 

are because UML 2.2 includes specifications for the visual layout of the diagram.  For example, 

UML 2.2 specifies connection point, final state, and PseudoStateKind, which are related to the 

visual layout of the state machine diagram.  Umple supports regular events, and timed events; 

therefore, we have additional attribute for the events, while UML 2.2 imports events 

specifications from UML:: CommonBehaviours:: Communications :: Trigger. 



59 
 

Table 7: Comparison between Umple and UML 2.2 state machine meta-models 

 Umple state machine meta-model UML 2.2 state machine meta-model 

State string: name 

boolean: isStartState 

boolean: isComposite, isOrthogonal, 

isSimple, isSubmachineState 

Transition  No attributes kind: internal, local, external 

Pseudostate Umple handles some pseudostates 

differently (refer to Chapter 4: 

Syntax and semantics of composite 

state machines and Chapter 5: 

Implementation of composite state 

machines). Entry and exit Points 

are not supported. 

initial, deepHistory, shallowHistory, join, 

fork, junction, choice, entryPoint, exitPoint, 

terminate 

event string: name 

boolean: isTimer 

float: timerInSeconds 

UML:: CommonBehaviours:: 

Communications :: Trigger  

Action string: ActionType 

string: actionCode 

boolean: isInternal 

UML :: CommonBehaviors :: 

BasicBehaviors :: Behavior 

Statemachine string: name No attributes 

Activity  string: activityCode UML :: CommonBehaviors :: 

BasicBehaviors :: Behavior 

Guard string: condition UML::Classes:: Kernel :: Constrain 

Other 

elements 

No meta-model representation. 

Refer to Chapter 4: Syntax and 

semantics of composite state 

machines and Chapter 5: 

Implementation of composite state 

machines for more information on 

how Umple handles composite 

state machines. 

Region, Vertex, ConnectionPointReference, 

FinalState 



60 
 

 

3.4 State Machine Design Decisions 

In this section, we state our motivating goals and present the major design decisions we made 

during the building of state machines in Umple. 

3.4.1 Umple state machine goals 

Our objective is to create a straightforward syntax that can enable developers to quickly, 

efficiently, and sufficiently create executable state machines.  Umple should provide a simple 

syntax to create and define state machine elements.  We have the following syntax, design, and 

generated code related goals: 

Goal 1: Minimal use of reserved words.   

We should avoid the introduction of new reserved words as much as possible.  Reducing the 

number of reserved words reduces the complexity of the language and makes it easier to learn. 

Wherever we do introduce reserved words, we should consider using reserved words that are 

used for the same purpose in other languages. 

Table 8 summarizes the keywords and symbols used in Umple. 

Table 8: Umple state machine keywords 

entry/ An element of a state. Designates an entry action. 

exit/ An element of a state. Designates an exit action. 

do An element of a state. Designates a do activity. 

Final A special state when reached indicates that a state machine is completed. 

[ ] A symbol for guard conditions.  

-> A symbol for transition to a next state. 

|| A symbol for a concurrent region. 

{}  Curley brackets used for actions code. 

By using concise syntax grammar, we were able to eliminate the need to use keywords for the 

following state machine elements (Table 9): 
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Table 9: Minimizing the number of keywords 

State machine An attribute name followed by a bracket is identified as a state machine. 

Start state The first state is the start state. 

End state Any state without outgoing transitions is considered an end state. 

Action code Action code is native language code between two curly brackets. 

Transition 

action 

Transition action code follows a ó/ô. 

Guard code A native language code that must evaluate to a Boolean value and is placed 

between two square brackets. 

Nested states Nested states use the syntax of nested curly brackets. 

 

Goal 2: Umple syntax should be concise. 

Developers should be able to create and specify state machine elements in a concise manner.  

Concise syntax contributes to enhanced readability, comprehensibility, and reduced complexity. 

Goal 3: Umple syntax should be easily extensible 

Whenever possible, Umple syntax should allow for additional functionality with minimal 

disturbance to the syntax, and underlying tokenization and parsing processes. 

Goal 4: Umple syntax should look and feel like high level programming languages. 

Developers who are already accustomed to writing code should find Umple familiar and easy to 

learn. 

Goal 5: Umple syntax should eliminate the need to edit underlying generated code. 

Umple supports native code for all types of actions and guard conditions.  The syntax should 

enable developers to satisfy their development needs without requiring the editing or inspecting 

the generated code. This is similar to how software developers do not generally inspect the code 

generated by the high level programming languages compilers.  

Goal 6: Umple generated code should be efficient. 

By efficient we mean that the code should satisfy the state machine semantic behavior, while 

having comparable performance levels to the best code written by hand. 

Goal 7: Umple generated code should look like code written by hand. 

The generated code should be as readable as the best state machine code written by hand. The 

main reason for this is so that programmers can easily verify it. Note that there is no 

contradiction between eliminating the need to edit the code (Goal 5) and this goal. We aim at 
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making Umpleôs generated code easy to understand and verify, and at the same time, users can 

edit Umple code itself to make any necessary changes. 

Goal 8: Umple should exploit textual modeling potential. 

Textual modeling, we claim, allows us to create state machines models in a unique and powerful 

way.  For example, Umple should maximize reuse of state machine models.  It ought also to be 

possible to, for example, merge several state machines or compose them from textual files 

containing various components of a state machine. The appearance of multiple actions for the 

same state should also be supported, with the compiler simply combining them. 

3.4.2 Design decisions 

This section presents the design decisions we have made.  We present the design alternatives, the 

decisions made, and align our decisions to our stated goals. 

Decision Point 1: State machine design pattern 

Contributes to goal 5 and goal 7 

In section ñCode Generation from State Machinesò on page 31, we presented our survey of 

existing design alternatives for state machine code generation as exhibited in the state-of-the-art 

commercial, open source, and research prototype tools.  Our Umple state machine 

implementation adopts a variant of the In-Class design pattern.  The In-Class design pattern has 

the following properties that contribute to our Umple goals: 

1. Number of lines of Code. 

The In-Class design decision results on average in a smaller number of lines of code. 

2. Performance considerations. 

The In-Class design pattern performance analysis results in performance that is 

significantly better than the extended multiple-class design pattern, and only negligibly 

worse than the multiple-class design pattern. 

3. Number of generated classes. 

The In-Class design pattern always generates a single class.  Comparison of the three 

design pattern is summarized in Table 6 on page 45.  In typical systems that are 

comprised of a number of classes, having more classes generated for a state machine 

implementation results in generated code that is less intuitive, and confuses the developer 

since classes that represent real system entities become mixed with state machine 

implementation classes. 
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4. State machine for attributes. 

Because Umple supports state machines for attributes that are already within an Umple 

class, it is more convenient to generate the state machine code within the same Umple 

generated class.  The simplicity can be even more significant when there are multiple 

attributes in a given class, each with its own state machine controlling it. 

There are factors that may result in other design patterns being more attractive.  For example, our 

Umple syntax and meta-model, as well as the parsing and tokenization mechanisms, support 

reusable actions and reusable guards.  Implementing reusable state machine elements may be 

easier if another design pattern is adopted.  For example, generating a dedicated class for all 

actions may make it easier for developers to locate actions and reuse them.  This is particularly 

true for a state machine diagrams with a large number of actions.  In addition, having more 

classes means objects that are created are smaller in size, which could mean enhanced run-time 

performance. 

The mitigation of such compromises brings about the following alternatives: 

Alternative 1:  Always implement the In-Class design pattern regardless of the state machine 

characteristics (size, reusable actions and/or guards, etc).  This is the alternative that Umple 

currently adopts. 

Pros:  The generated native code always looks the same regardless of the state machine 

characteristics.  In situations where developers need to inspect the generated code, the code will 

look more familiar and predictable.  The Umple platform is hence less complex, as we always 

generate the code using similar templates. 

Cons: Less flexibility, as the user cannot override the chosen design pattern. 

Alternative 2:  dynamically apply a design pattern based on the state machine characteristics. 

This alternative implies that the characteristics of the state machine itself (i.e, number of states 

and transitions) determine the design pattern used for code generation. 

Pros:  The generated code is customized to the type of state machine under implementation.  The 

size of the generated code may be well balanced on a number of classes if the state machine was 

large in size. 

Cons:  The generated code is more complex, and the number of classes is larger in the case of 

multiple-class pattern and extended multiple-class patterns.  The generated code pattern is more 

complex.  Developers, particularly who need to validate the generated code, will be faced with a 

number of different code patterns. 

Alternative 3:  Allow the developer to choose, or control, the type of design pattern to be 

adopted. 
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This alternative implies that Umple user would be able to include a directive to control which 

design pattern to be used for code generation. 

Pros: maximum flexibility is given to the user to choose which design alternative to adopt. 

Cons: This alternative shifts the burden to the developer to decide on the most appropriate design 

alternative.  This also increases the complexity in the language, and the underlying Umple 

platform. 

Decision Point 2: Handling of events 

Contributes to goal 6 and goal 7 

A state machine responds to the occurrence of events that are typically, but not always, outside 

of the context of the state machine itself.  The events that Umple state machine responds to are 

implemented as public functions that can be called by any component of the system.  The 

functions return a Boolean value; true if the event has resulted in transition, and false otherwise.  

This implementation results in maximum flexibility, as those public functions can then be easily 

encapsulated into functions that can implement additional event types. 

Decision Point 3: Core state machine behavior 

Contributes to goals 5, 6, and 7 

Unlike most code generated from the surveyed modeling tools, and even though we envision 

Umple users to never edit the generated code, Umple generates code that resembles hand-written 

code.  We distributed the core state machine behavior for each event handler function.  The event 

handler function uses a switch statement on the current active states, and determines the 

appropriate behavior. 

Each transition requires the following steps: 

- Check for guard conditions 

- Execute exit action(s).  There may be multiple exit actions for nested states. 

- Execute transition action. 

- Execute entry action(s).  There may be multiple entry actions for nested states. 

To hide such details, we encapsulated these actions within a function, similar to the approach 

adopted in the Telelogic tau modeling tool [43]. 

Decision Point 4: Implementation of composite state machines 

Contributes to goals 1, 2, 3, 4, 7, and 8. 
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Composite state machines are state machines with nested states or concurrent regions. Umple 

supports nested states without introducing additional keywords. Umple uses the syntax of nested 

curly brackets to define nested states. For concurrent regions, Umple uses the symbol ||. 

For implementation of the code generation for composite states, Umple uses a novel 

methodology. Traditional code generation from composite state machines results in generated 

code that is exponentially large, harder to read, understand and maintain. 

The syntax, semantics, and code generation for composite state machines are the topic of the 

next two chapters. 

3.5 State machine reuse and mixin s 

Contributes to goal 8. 

Umple supports an unbounded number of state machines in every class, each of which can be 

defined independently.  The same event in Umple can trigger transitions in one or more state 

machines.  Simple functions defining guards and actions can be reused across a number of state 

machines, or across classes and components, and again the definitions of these can be defined 

independently, allowing mixing in of different sets to explore different requirements. 

The following simple example illustrates a simple traffic control system, where the pedestrian 

light is dependent on, or controlled by, another state machine controlling the car traffic.  For 

conciseness, we illustrate only partial models. 

class  trafficLightSystem {  

  carTraffic {  

    Red {  

      entry  / {goingRed();}  

      after (redTimer)[!emergency] - > Yello w;  

      emergencyNotice - > AllRed;   

    }  

  pedestrianTraffic  

    DontWalk  {  

      goingRed [!emergency] - > Walk;  

      emergencyNotice - > DontWalk;  

} }  

 

 

In this example, the event emergencyNotice triggers a transition in two separate state machines 

in the same class.  Similarly, the guard emergency is used in two transitions in two state 

machines.  The example also shows how an action in one state machine, goingRed( ),  can 

function as an event and trigger a transition in an another state machine. 
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We have so far presented one aspect of reuse and mixins in Umple, where more than one state 

machine can reuse elements and behave interdependently. We now illustrate another aspect, 

where complete state machines are reused and customized. 

A traffic lightôs basic operation is timer-based transitions from three states, Red, Green, and 

Yellow.  This simple and basic model can initially be implemented as a stand-alone state 

machine, and later incorporated into various classes: 

For simplicity, we continue to present partial models. 

Statemachine coreTrafficController {  

  Red {  

    After(redTimer) - > Green;  

    After(greenTimer) - > Yellow;  

    After(yellowTimer) - > Red;  

} }  

 

In systems where a basic traffic light is desired, the previous standalone state machine can be 

referenced as follows : 

c lass  TrafficLightController {  

  simpleController as  coreTrafficController;   

}  

 

This example creates a state machine called simpleController that behaves identically to the 

coreTrafficController state machine. 

Some traffic lights may have additional states, like flashing red, or flashing yellow, that are not 

part of the basic traffic light behavior.  Letôs call this type of traffic light FrFy for short.  Adding 

such a feature can be accomplished as follows: 

Class TrafficLightController {  

  FrFy as coreTrafficController {  

    Red {  

    + midnightHour - > FlashingRed; }  

     

    FlashingRed {  

     morningHour - > Red;  

} }  

 

The previous example illustrates a scenario of adding to a basic state machine.  The next 

example illustrates removing an existing element of a state machine. 

Letôs assume now we are modeling a traffic light for a high way entrance, and that the light is 

either Red or Green.  We call this traffic light H-way for short. 
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class TrafficLightController {  

  H- way as coreTrafficController {  

    -  After(greenTimer) - > Yellow ;  

} }  

 

This example illustrates a scenario where a transition is removed from the model. 

The process of modeling controllers may reveal a number of reusable state machines.  These 

reusable state machines can then be refined and used as we described above.  The outline view of 

the Umple editor (discussed in Section  3.7.1 Umple textual  on page 70) facilitates the discovery 

of such reusable state machines. 

3.6 State machine timers  

Umple state machines support two types of timers. After timers and afterEvery timers. The after 

timer fires an event to trigger a transition after a specified amount of time. On the other hand, 

afterEvery timer fires an event on a specified intervals to trigger a transition. The following is an 

example describing timers in Umple. 

class  Timer {  

  boolean G = true;  

 

  status {  

    S1 {  

      after (5) - > S2;  

    }  

    S2 {  

      afterEvery (5) [G] - > S1;  

    }  

  }  

}  

 

In this example, while the state machine status is in S1, and after 5 seconds, a transition to S2 is 

triggered. This timer expires only once, and if for any reason a transition does not occur (if there 

is a guard that evaluates to false), the timer is not restarted. 

 

In the same example, while in S2, and after every 5 seconds, a transition to S1 is triggered, 

subject to the guard. This timer is restarted automatically every 5 seconds. The concept is that the 

state machine will keep trying until the guard becomes true. 

 

The implementation of this timer behavior uses the timerTask in Java. For this example, Umple 

defines two helper variables as follows: 
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//Helper Variables  

 

  priva te TimedEventHandler timeoutS1ToS2Handler;  

  private TimedEventHandler timeoutS2ToS1Handler;  

 

 

The event handling method is similar to any normal transition. The event name given to this 

transition timeout <name of the source state> <name of the destination state>. 

 

public boolean timeoutS1ToS2()  

  {  

    boolean wasEventProcessed = false;  

     

    Status aStatus = status;  

    switch (aStatus)  

    {  

      case S1:  

        exitStatus();  

        setStatus(Status.S2);  

        wasEventProcessed = true;  

        break;  

    }  

 

 

 

Since states may have other outgoing transitions, it is required to stop timers whenever we exit  

states with active timers. The following method is called whenever state S1 or S2 is exited. 

 

private void exitStatus()  

  {  

    switch(status )  

    {  

      case S1:  

        stopTimeoutS1ToS2Handler();  

        break;  

      case S2:  

        stopTimeoutS2ToS1Handler();  

        break;  

    }  

  }  

 

 

Similarly, any transition into either S1 or S2 should start the timer. 
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private void setStatus(Status a Status)  

  {  

    status = aStatus;  

 

    // entry actions and do activities  

    switch(status)  

    {  

      case S1:  

        startTimeoutS1ToS2Handler();  

        break;  

      case S2:  

        startTimeoutS2ToS1Handler();  

        break;  

    }  

  }  

 

 

3.7 Umple textual  editor  and automated update site  

Contributes to goals 4, 5, and 8 

In order to enhance Umple adoption and increase the pool of available participants for our 

grounded theory study, we need to enhance Umple editors.  The challenge is that the Umple 

system and language are under continuous development and modifications.  The approach for the 

textual editor has to accommodate this aspect of Umple.  An Umple textual editor has to be 

tightly related, and at the same time loosely coupled, with the underlying Umple components.  

This allows us to quickly refactor changes in the Umple language and bring them to the editor, 

and at the same time, not depend on the editor for any change in Umple. 

 

Figure 13: Umple high-level system components 

Figure 13 illustrates Umple components that relates to the editors.  As we show in the next two 

sections, the Umple textual editor relies solely on Umple Grammar and Umple Meta-model 

respectively. 
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3.7.1 Umple textual editor 

We have built an Umple textual editor based on Xtext technology [44]. Xtext is a language 

development platform that supports the development of general purpose programming languages 

and domain specific languages. We have identified Xtext to be a suitable approach to implement 

an Eclipse-based Umple textual editor for the following reasons: 

1. Xtext is open source. 

2. The Xtext based editor becomes tightly related to Umple grammar.  This means that to reflect 

any change in the Umple grammar requires only straightforward changes to the 

corresponding Xtext Umple grammar. As future work it is planned to be able to generate one 

from the other. 

3. We can easily extend the editor to limit side effects, where the developer may gain access to 

aspects of the generated code that he is not supposed to; for example, a transition action that 

may update the value of the state machine. 

4. Most importantly, Xtext is built on standard technologies, like Java and Antlr [42].  Building 

on standard technologies simplifies maintenance. 
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Figure 14: Umple textual Editor 

Figure 14 illustrates some of the features in the Umple textual editor. 

1. Umple perspective.  Clicking on the Umple perspective opens the layout that is most 

appropriate for Umple development. 

2. Outline view shows the elements of the Umple model organized in a hierarchy.  The 

elements shown correspond to both Class and state machine modeling elements.  Optionally, 

the developer can choose to show the native code hierarchy. 

3. Sophisticated error recovery in the Umple textual editor.  In this case, the model is missing 

the forward slash before the action code.  The editor identifies the syntactic error, and 

quickly recovers and continues parsing at best guess in the next token. 

4. Error messages with expected tokens. 

3.7.2 Automated update site 

As the number of Umple contributors and users are expanding, we implemented a mechanism 

whereby users running Umple plug-in get notified automatically whenever there is a newer 
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Umple release. We achieved this by implementing an automated update site. When a new 

version is released, the Umple Eclipse plug-in notices the server version is newer than the local 

version, and prompts the user to automatically download and install the newer version. 

3.8 Summary  

In this chapter, we introduced the syntax and semantics of simple state machines in Umple. We 

introduced the Umple grammar, and the meta-model.  We compared Umpleôs meta-model to the 

latest UML state machine meta-model. We discussed the major design decisions we took, such 

as the code generation pattern used and the approach to represent state machine model elements 

textually in Umple. Our decisions were largely driven by a number of goals, which themselves 

were derived from the vision for the Umple technology. Umple design goals are: 

1. Minimize the use of reserved words. 

2. Keep the syntax concise and extendable. 

3. Umple syntax should look and feel like high level programming languages. 

4. Eliminate the need to edit the generated code. 

5. The generated code should be efficient. 

6. The generated code should look like code written by hand. 

7. Exploit textual modeling potential. 

 

We demonstrated how Umple supports reuse and mixing in of state machines.  Finally, we 

presented the Umple textual editor similar to editors available to other high level programming 

languages, like auto-complete, code-assist, outline and error views. The Umple update site 

enables Eclipse users to update their Umple compiler whenever a newer release is available. 

 



73 
 

Chapter  4: Syntax and semantics of composite state  machines 

The objective of this chapter is to explore the complexities brought about by UML composite 

states and to outline the syntax and semantics of nesting and concurrency concepts.  We 

highlight some of the outstanding issues and demonstrate Umpleôs approach in handling such 

issues. We use UML 2.4 beta II specifications [23] as our reference (the latest published at the 

time of writing). However, and as we demonstrate in this chapter, Umple is not just another 

implementation for UML specifications. Umple does deviate from the standard when we find 

objective justifications. Such deviations are not uncommon, many modeling and code generation 

tools adopt different code generation styles, and occasionally, their own implementation flavor of 

the semantics. 

In addition, we explore the undefined semantics of UML composite state machines, and show 

how some of such semantics can be unambiguously defined in Umple.  UML specifications do 

not specify code generation patterns.  Umple, in this area, draws from related work, and existing 

modeling tools in weighing the options. Umpleôs approach in handing code generation from 

composite state machine is novel.  The approach avoids explosion of the generated code and 

maximizes reuse of simple state machine semantics.  

It is the topic of the next chapter to illustrate how such semantics are implemented in code 

generation.  The next chapter presents a modified flattening approach for code generation, and 

demonstrates how the semantics issues discussed in this chapter are implemented. 

This chapter is a deep investigation of the UML specifications that relate to composite states. We 

assume the reader is well familiar with the basic semantics of state machine presented in Chapter 

3: Syntax and semantics of simple state machines. 

4.1 Syntax of Composite state machines  

Encapsulation of state machines enables the modeling of complex behavior concisely. Every 

composite state machine can be flattened in one or more simple state machines. The real power 

in composite state machines is conciseness.  Our objective therefore is to enable the textual 

modeling of composite state machines in a way that maintains or enhances on this conciseness.  

ñThe concept of hierarchical state machine is a true blessing only if it is easy enough to 

implement in a main stream programming languageò [45].  The grammar for simple state 

machines was presented in the previous chapter (Chapter 3: Syntax and semantics of simple state 

machines). For the purpose of this chapter, we only present the grammar for composite state 



74 
 

machines.  We start by presenting the syntax for nested state machines, and then present the 

syntax for concurrent state machines.   

Nesting of state machines is defined recursively. As shown in grammar rules R7 and R8, a state 

has a state entity. A state entity may itself contain a state. This enables the syntax to define 

unlimited levels of nesting of states. 

Concurrency is defined using the symbol ||. When a state entity is ||, Umple understands that the 

next state to be defined is concurrent. 

R7 state  :  

[stateName] { ( [[ comment]] | [=changeType: - |*]? [[ stateEntity ]] )* }  

R8 stateEntity -  :  

[= - ||]  | [[ transition ]] | [[ entryOrExitAction ]] | [[ activity ]] | 

[[ state ]]  

 

Umple uses nested brackets to represent nesting levels. The example below defines stateA2 to be 

a substate of stateA1, which is itself is a substate of stateA. 

stateA {  

  stateA1 {  

    stateA2 {  

    }  

  }  

}  

 

The following shows concurrent states. 

state A {  

  state B { }  

  ||  

  state C { }  

}  

 

In UML terminology, stateB and StateC are two concurrent regions of state A. 

More examples are presented in the next chapter. 

4.2 Semantics of composite  states machines  

The UML 2.4 Beta II specifications [23] leave significant room for undefined semantics (known 

unknowns). More interestingly are the unstated undefined semantics (unknown unknowns). As 

we tread over the semantics of composite states, we carefully expose these two aspects of UML 

state machines and show how Umple addresses them. 
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We start by exploring composite state semantics by using the example in Figure 15 as a 

playground to lay out our analysis of the semantics. The example is comprised of seven states, 

one nesting level, two concurrent regions, and 11 transitions. For simplicityôs sake, the example 

does not include any actions, guards, or activities, but our analysis can easily extend to include 

such elements. 

 

 

 

 

We now analyze the transitions in Figure 15 one by one in more depth. 

 

X1:  

The state machine exits the source simple state óXô and enters the destination composite state 

óYô. Instantaneously, the state machine is in state óAô and state óCô.  

 

Using UML specification terminology, this is a ódefault entryô into the ócontainingô composite 

state Y (page 570 in the UML specifications).  

 

X2:  

This is an invalid transition. The state óYô is a concurrent state, and the two regions must at all 

times stay active. 

 

We determined that this is an invalid transition, despite the fact that UML specifications can be 

interpreted in a way to make such transitions valid; a transition that crosses the boundaries of 

Figure 15: Exploring the semantics of state machines 
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concurrent regions forces exits of all regions and re-entry of all regions (page 591 in the UML 

specifications). 

 

X3: 

This is a simple transition from state óAô to state óBô. 

 

X4:  

This is an invalid transition, similar to transition X2. 

 

X5:  

The state machine exits the source state óDô and also exits both regions of state óYô, and enters 

the simple destination state X. 

 

X6:  

This exits state Y, and any substates, and enter the simple destination state óZô.  The UML 

specifications call this a óhigher level transitionô. 

 

According to the UML specifications, a higher level transition with a target outside a composite 

state forces exits of all substates and regions.  But if the target is within the composite state, then 

no exits are forced. But what if the target is in a different region (like X2 and X4 above)?  UML 

does not rule out the validity of such transitions as discussed earlier.  

 

X5 and X6, despite their apparent similarity, bear significant semantics differences. X5 can only 

be triggered while the state machine is state óDô, while X6 can be triggered while at any state 

combinations of the inner states of óYô. 

 

Another issue with X6 is the question of which region is exited first? Imagine each of the two 

regions has exit action A and exit action B. Which exit action is called first? UML specifications 

specify that exiting the regions has to occur first before updating the state machine active state 

(Page 571 in the UML specifications). But if the state machine is being executed in a single-

thread environment, the need to define which region is exited first becomes necessary. 

 

Due to the linear nature of text, Umple will exit the region whose definition comes first in the 

linear text. If the developer would like another behavior, he can simply alter the sequence in the 

Umple source. This is one aspect where the linear nature of text clears potential ambiguity in the 

visual model. 

 

X7:  

Enter state óDô, and instantaneously, enter state óAô. In UML 2.4 terminology, this is a transition 

to a direct substate. The UML specifications calls this explicit entry (page 570 in the UML 



77 
 

specifications), as opposed to implicit entry in the case of X1, where the transition into state A 

and state C are implicit. 

 

X8:  

Similar to X3, this triggers a transition from óDô to óCô. 

 

X9: 

 This is a simple transition between two simple states within a composite state machine. 

 

X10: 

This transition triggers exiting all inner states of óYô, exiting the state óYô itself, and then 

entering state B. Instantaneously, the state machine also enters state óCô. 

 

This is an undefined semantics (under specification) in UML 2.4 Beta II specification. The 

specifications do not mention the semantics of this transition. 

  

X11:  

This exits all inner states of óYô, exits óYô itself, and then enters states óAô and óCô. 

Similar to transition X10, this is an undefined transition in UML 2.4 specifications. 

4.3 Final States 

ñA final state is a special kind of state signifying that the enclosing region is completedò (UML 

2.4 Beta II specifications page 547).  When all regions in a state machine reach a final state, then 

it means that the entire state machine is completed. 

According to the UML specifications [23] (page 547 on version 2.3), a final state has the 

following constraints: 1. No outgoing transitions; 2. has no regions; 3. has no reference to a sub 

machine; 4. has no entry behavior; 5. has no exit behavior; 6. has no do activity behavior. Umple 

interprets a completion of a state machine to mean deletion of the object.  An Umple class can 

contain multiple state machines. A completion of any state machine in the class will delete the 

entire object. 

Similarly, in a composite state machine, completion of a region implies the completion of the 

entire state machine, and object deletion follows.  The UML specifications state that completion 

of a region does not mean the completion of the entire state machine.  This is an area where 

Umple semantics differs from UML specification.  We made the decision to delete the object 

when a region is completed for the following reasons: 

1.   This makes the behavior of completion in the case of multiple state machines in the same 

class work the same as a state machine with concurrent regions. 
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2. Supporting the UML alternative requires the introduction of the notion of partial completion, 

which adds complexity that, we submit, will usually not be needed. Partial completion is the 

concept that one region has completed, while one or more of its concurrent regions have not 

yet completed. It would have been necessary to track which regions have reached partial 

completeness, so that if all of them reach partial completeness then the state machine as a 

whole can become complete, and the object can be deleted. But there are many other 

complexities: For example, if a transition is taken out of a state with concurrent regions, one 

or more of which are partially complete, then the partial completeness status would need to 

be cancelled. But upon returning to óhistoryô this would need to be restored. 

3. Any behavior supported in the UML preferred semantics can be supported by using Umpleôs 

End states in the following manner: Imagine there is the intent to transition to final when End 

states s1 and s2 in two concurrent regions are both reached. The entry action in such end 

states can set variable end1, and2 to true and trigger event s1s2final. Then there can be a 

transition s1s2final to ófinalô from the surrounding state machine, guarded by [end1 && 

end2]. 

We illustrate Umple syntax and semantics of final states in the following three cases. 

4.3.1 Case 1: Final states in regions 

Figure 16 illustrates a composite state machine with two regions.  Each region has a Final state.  

Note that the keyword Final is case sensitive.    

 

 

class  FinalState {  

  stateMachine {  

    M {  

      T2 - > C;  

      R1 {  

        A {  

          T1 - > Final;  

        }  }  

      ||  

      R2 {  

        B {  

          T4 - > Final;  

        }  

      }  

    }  

    C { T3 - > M}   

  }  

}   

Figure 16: Final states in regions 
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When T1 occurs, the state machine becomes complete and Umple deletes the object.  The UML 

alternate interpretation would mean that the state machine would have been partially complete 

since R2 would have been still active.  In that case, the state machine would still have been able 

to respond to T4 and T2. 

4.3.2 Case 2: Transition from a composite state to a simple Final state 

Figure 17 illustrates a transition from a composite state to a Final state.   

M 

 

class  FinalState {  

  stateMachine {  

    M {  

      T1 - > Final;  

      R1 {  

        A {}  

      }  

      ||  

      R2 {  

        B {  }  

} } } }  

Figure 17: Transition from a composite state to a Final state 

When T1 occurs, Both R1 and R2 becomes instantaneously inactive.  The state machine reaches 

a Final state and the state machine becomes completed.  Object deletion follows. 

4.3.3 Case 3: Final state in nested configuration 

Figure 18 illustrates final states in a nested configuration. 

 

 

 

 

class  FinalState {  

  stateMachine {  

    L1 {  

      L2 {  

        t  - > Final;   

      }  

    }  

  }  

}  

Figure 18: Final state in nested configuration 

When the state machine is in L2 state, and T occurs, the transition to the Final state takes place 

and the whole state machine becomes completed. 

In such a nested configuration, the exit action of L2 and L1 is called prior to object deletion. 
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4.4 Do Activities  

UML specifies the do activity to be the execution of a behavior that takes place while in a 

specific state. The execution of the thread representing the do activity starts when the state is 

entered following the execution of the entry action of that state, if such an action exists.  If the 

state is exited before the do activity is completed, the do activity is aborted prior to its 

completion. 

In Umple, any state can have an associated do activity. We demonstrate the behavior of do 

activities in Umple using three cases; 1) Nested configuration, 2) Concurrent configuration, 3) A 

configuration where a single event triggering more than one transition in two separate state 

machines within the same class.  

4.4.1 Case 1: Do activity in nested configuration 

This case demonstrates nested states with two do activities at two different levels.   

 

 

 

 

 

class  DoActivity  {  

  stateMachine {  

    A {  

      e - > C ;  

      do  {d1;}  

    }  

    B {  

      do  {d2;}  

      C { do {d3;}  }  

    }     

  }  

}  

Figure 19: Case 1: Do activity in nested configuration 

The state machine starts in state A.  At this state, Umple creates and executes the thread d1.  

When the event e occurs, the thread d1 is stopped and the transition to the inner state C takes 

place.  Upon this transition, Umple creates two threads, one for d2 and one for d3. 

4.4.2 Case 2: Do activities in concurrent configuration 

This case demonstrates a concurrent state machine with two do activities executing in parallel. 

e 

T 

 

A 
Do {d1 ; }  

B 
Do { d2; }  

 
C 
Do { d3; }  
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class  DoActivity  {  

  stateMachine {  

    A {  

      e - > M ;  

    }  

    M {  

      e - > A ;  

      m1 {  

        C { do {d1;} }  

      }  

      ||  

      m2 {  

        D { do {d2;} }  

}  }  }  }  

Figure 20: Case 2: Do activities in concurrent configuration 

In this case, the state machine starts in state A.  When the event e occurs, the transition to the 

concurrent state M takes place, and an implicit transition into both C and D is fired. This is 

because in both regions, m1 and m2, C and D are the start states by default.  Once the state 

machine enters C and D, both threads d1 and d2 start executing. 

If e occurs again while the concurrent state M is active, a higher-level transition to state A takes 

place, exiting both states C and D.  Upon this transition, both threads d1 and d2 are stopped. 

4.4.3 Case 3: Do activities in Multiple state machines within the same class 

Umpleôs support for multiple state machines in the same class enhances the simplicity with 

which a developer can model parallel behavior.  Using concurrent state machines can be 

simulated by using multiple state machines in the same class.  The example below demonstrates 

this use case. 

 

 

 

 

 

class  DoActivity {  

  stateMachineOne {  

    A {  

      e - > B ;  

      do  { d1; }  

    }  

    B { }  

  }  

  stateMachineTwo {  

    One {  

      e - > Two ;  

      do  { d2; }  

    }  

    Two { }  

}  }  

Figure 21: Case 3: Do activities in Multiple state machines within the same class 
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This Umple class contains two state machines, stateMachineOne and stateMachineTwo.  The 

event e triggers two transitions in the two separate state machines from state A to state B in the 

first state machine, and from state One to state Two in the second state machine.  These two 

transitions result in the stopping of the two do activities, d1 and d2. 

4.5 Outstanding issues 

Our investigation of the latest UML composite states specifications uncovered a number of 

outstanding issues. Some of these issues are known and stated in the UML specifications, others 

are not mentioned. 

4.5.1 A higher level transition to composite states with regions without start 
state 

 

 

 

 

 

Consider the higher-level transition X1 in Figure 22. What is the semantics of such transition? 

The UML specifications discuss two alternate interpretations (page 566 in the UML 

specifications). One interpretation is that such a model is invalid. The second interpretation is 

that this is a valid model, and that the state machine enters the composite states, but does not 

enter any of the substates. The UML specifications do not prefer either interpretation. 

However, this model becomes more problematic if one of the two regions happened to have a 

start state. If such is a valid model, then what is the resulting state? 

Umple resolves such ambiguities by implicitly making the first state the start state. Hence, the 

transition X1 implicitly enters the start state in the two regions. 

 

 

 

X1 

Figure 22: A higher level transition to a composite state 
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4.5.2 Conflicting transitions 

 

 

 

 

 

A conflicting-transitions situation occurs when the same event fires two different transitions 

(pages 581, 582, and 583 in the UML specifications). This can occur in unguarded transitions, or 

in guarded transitions when the guard value is true (Figure 23). Conflicting transitions result in a 

non-deterministic state machine. 

The UML specification states that the state machine in such situation can choose a subset of 

those transitions to fire; however, the sequence of the firing is not straightforward. Some of the 

conflicting transitions are resolved by complex algorithms. For example, the innermost transition 

always has a priority. But what if you have regions, which one has a priority then? 

Umpleôs linear nature resolves such ambiguity. The transition that comes first in the linear text is 

always chosen first. This approach makes the state machine deterministic. 

4.5.3 Forks and Joins with actions and guards 

 

 

 

 

 

UML state machine forks and joins cannot have guards or actions associated with them. Figure 

24 is therefore an invalid UML model (Constraint 1 on page 589 in the UML specifications). 

Umpleôs forks and joins can have guards and actions. The guard functions in a way identical to a 

guard on a simple transition (i.e. if the guard evaluates to false, none of the forks transitions takes 

place).  A fork action is executed before the transition takes place, and a join action is executed 

after the exit actions of all substates and regions are executed. 

E1 [G] 

E1 

Figure 23: Conflicting transitions  

Figure 24: Fork with actions and guards 

/A [G] 
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Y 
A B 

C D 

e1/set(x) 

e1/set(x) 

4.5.4 Partial Forks and Joins 

 

 

 

 

 

 

UML specifies that regions 2 and 4 are entered explicitly (Figure 25). The remaining two regions 

(region 1 and 3) are entered implicitly. UML does not specify any semantic difference between 

the explicit and implicit entries (page 571 in the UML specifications). Semantically, this is 

identical to a higher level transition to the boundary of the composite state machine (i.e., 

identical to X1 in Figure 15).  There is a semantic difference only if the transition is pointing to 

an inner state in region 2 and 4 that is not the start state.  In situations where there is a transition 

to two or more different inner states, with none being a default start state, support for partial 

transitions makes semantic sense. Umple, however, does not currently support such a case. 

4.5.5 Event processing in concurrent states 

 

 

 

 

 

 

The same event cannot trigger two transitions; except if the transitions are in two separate 

regions. Consider the event óe1ô in Figure 26. There is a need to unambiguously determine the 

firing sequence of the event e1. 

The UML specifications include a transition selection algorithm (TSA) that resolves most, but 

not all, conflicting transitions (we refer to semantics section on page 581 and transition selection 

algorithm on page 583). The TSA assigns priorities to transitions based on their relative nesting; 

the highest priority is given to the inner most state in the active state (in Figure 26, state Y is the 

1 

2 

3 

4 

 

Figure 25: Partial fork  

Figure 26: Event processing in concurrent regions 
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active state).  This algorithm works well for transitions that are at different nesting levels, but 

does not address the transitions similar to those in Figure 26. Umple gives higher priority to the 

region defined first in the linear nature of its textual notation. 

4.6 Large State Machine Example 

We have so far presented relatively simple state machine examples. In ñChapter 7: 

Experimentationò we also experiment with relatively small models. Here, we illustrate how 

larger and more complex state machines can be effectively represented textually in Umple. 

 

 

Figure 27: Complex state machine model 

Consider the example in Figure 27 when more action code and guard conditions are inserted in 

the visual representation, and model elements have more expressive naming. The image can 

quickly become too cumbersome to maintain. Another consideration is model refinements and 

edits; as the model grows, additional model modifications entail increasing effort to adjust the 

model layout and spacing.  

Software engineers spend a considerable amount of their time modifying and maintaining models 

[46]. One would expect that model maintenance to grow at a higher-than-linear rate as model 

size increases. This is because increasing effort is needed to rearrange and position increasing 
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numbers of model elements. We claim that Umple handles modifications more effectively 

especially for larger models. Some aspects of this claim is investigated in ñChapter 7: 

Experimentationò. 

The equivalent model is illustrated in Listing 5 below using Umple notation. 
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class  StateMachineTest {  

 

  Integer  v = 0;  

  status {  

    S1 {  

      e2 - > S2C;  

      S1A {  

        e1 - > S2;  

      }  

      S1B {  

        entry  /{setV( 0);}  

        e5 - > S1A;  

        S1B1 {  

          e3 - > S2B;  

          e4 - > S1B2;  

        }  

        S1B2 {  

          e1 [v> 4] - > S3;  

          e1 [v< 1] - > S2;  

          e3 - > S1A;  

          e4 - > S1B1;  

        }  

      }  

    }  

    S2 {  

      exit  / {setV( 6);}  

      S2A {  

        e3- > S1B1;  

        e1- > S2;  

        e4 - > S1;  

      }  

      S2B {  

        e4 - > S2A;  

      }  

      S2C {  

        e1 - > / {setV( 5);} S2B;  

        e2 - > S3;  

        e5 - > / {setV( 2);} S3;  

        e4 - > S2B;  

      }  

    }  

    S3 {  

      exit  / {setV( 3);}  

      e1 - > S1A;  

      e2 - > S2;  

      e3 - > S2C;  

      e5 - > S1;  

}  }  

Listing 4 : Complex state machine model 
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In the visual representation of this model, we found it difficult to use fully expressive event 

names and we had to minimize the use of actions and guards to keep elements from overlapping. 

Using Umple notation, it was relatively more effective to use full naming, actions and guards. 

Textual features such as refactoring and ófind-and-replaceô were handy in implementing such 

changes. 

4.7 Test Driven Development  

The Umple platform and tools are developed using a Test Driven approach [47] which provides 

for confidence that new development in Umple does not result in regression defects. The test 

Driven Development (TDD) approach adopted in the development of Umple is well explained in 

Forwardôs thesis [2]. In this section, we briefly describe the process, giving examples specific to 

the Umple state machine features. We also demonstrate how the TDD approach was instrumental 

in the development of the composite state machines. 

4.7.1 Umple Testing Process 

The Umple compiler starts by parsing the input Umple code into tokens. The tokens are then 

used to populate the meta-model, which is in turn used to drive a number of code generation 

templates to generate the target language code. The generated system can then itself be tested to 

make sure that Umple models generate code that behaves as expected. This testing process is 

summarized in Figure 28 below.  

 

Figure 28: Testing Process [2] 

4.7.2 Parsing Umple code into tokens 

Consider the following simple state machine. 
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class  LightFixture  

{  

  bulb  

  {  

    On {  

      push - > On;  

    }  

  }  

}  

 

The parser analyzes the input text and identifies tokens. Parsing this simple state machine 

generates the following tokens: 

[classDefinition][name:LightFixture][stateMachine]  

[inlineStateMachine][name:bulb][state][stateName:On]  

[transition][event:push][stateName:On]  

 

There are 80 test cases covering the parsing for state machines ranging from very simple state 

machines to a larger more complex composite states. The complete listing of test cases is 

published as part of the Google code project and can be found at the following location: 

http://code.google.com/p/umple/source/browse/# svn/trunk/cruise.u

mple/test/cruise/umple/compiler/  

4.7.3 Meta-model tests 

The objective of this group of test cases is to ensure that Umple maintains an accurate internal 

representation for the input model. The meta-model is tested to verify that an input model, after 

being correctly parsed, populates the right elements into an instance of the meta-model. For the 

simple example, we test the following are populated correctly: 

- State machine name 

- The number of states within a state machine. 

- The first state name (start state name). 

- The number of transitions. 

- Events names. 

 

Listing 5 illustrates the JUnit code that tests these aspects of the model. 
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 UmpleClass c = model .getUmpl eClass( "LightFixture" );  

 StateMachine sm = c.getStateMachine(0);  

 Assert. assertEquals ( "bulb" , sm.getName());  

 

 Assert. assertEquals (1, sm.numberOfStates());  

 State state = sm.getState(0);  

 Assert. assertEquals ( "On" , state.getName());  

 

 Assert. assertEquals (1,  state.numberOfTransitions());  

 Transition t1 = state.getTransition(0);  

 Assert. assertEquals ( "push" , t1.getEvent().getName());  

 

Listing 5: Meta-model test 

The number of meta-model test cases is similar to the number of the parser test cases. This is 

because for each model tested from a parsing perspective, is also tested from a meta-model 

population perspective. 

4.7.4 Code generation tests 

For each target language, we test to make sure that the generated code matches exactly our 

expectation. This can be done by writing by hand the expected generated code, and then testing 

to make sure that what is actually generated matches our expectations. For our sample model, if 

the target language is Java, the expected generated code is shown in Listing 6. 
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/*PLEASE DO NOT EDIT THIS CODE*/  

/*This code was generated using the UMPLE *Umple Version* modeling language!*/  

 

public  class  LightFixture  

{  

 

  // ------------------------  

  // MEMBER VARIABLES  

  // ------------------------  

 

  //LightFixture State Machines  

  enum Bulb { On }  

  private  Bulb bulb;  

 

  // ------------------------  

  // CONSTRUCTOR 

  // ------------------------  

 

  public  LightFixture()  

  {  

    setBulb(Bulb.On);  

  }  

  // ------------------------  

  // INTERFACE  

  // ---- --------------------  

  public  String getBulbFullName()  

  {  

    String answer = bulb.toString();  

    return answer;  

  }  

  public  Bulb getBulb()  

  {  

    return bulb;  

  }  

  public  boolean push()  

  {  

    boolean wasEventProcessed = false;  

     

    Bulb aBulb =  bulb;  

    switch (aBulb)  

    {  

      case On:  

        setBulb(Bulb.On);  

        wasEventProcessed = true;  

        break;  

    }  

    return wasEventProcessed;  

  }  

  private  void setBulb(Bulb aBulb)  

  {  

    bulb = aBulb;  

  }  

 

  public  void delete()  

  {}  

 

}  

 

Listing 6: Generated Java code 
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There are about 98 code generation test cases. All test cases follow the same pattern; test the 

expected or desired output to the real output and make sure both are identical. These test cases 

are published as part of the Umple Google Code project and can be found at the following 

location: 

http://code.google.com/p/umple/source/browse/# svn/trunk/cruise.umple/t

est/cruise/umple/statemachine/implementation/  

4.7.5 Generated-systems tests 

The final stage of testing involves testing the behavior of systems generated by Umple. For 

example, we feed the compiler the model shown in Figure 27, and then test the generated system 

using a sequence of events, and make sure that the resulting state is the expected state. 

Composite state machines are built by means of reusing the implementation of simple state 

machines (see Chapter 5: Implementation of composite state machines).  This testing approach 

has enabled us to efficiently build the composite state machines in Umple with few regression 

defects. 

Listing 7 illustrates a sample generated system test. The system shown below is fed as an input to 

Umple and tested is performed on the generated system 

class  GarageDoor   

{   

   status {   

      Open {  

        buttonOrObstacle - > Closing;  }   

      

     Closing  {   

          buttonOrObstacle - > Opening;   

          reachBottom - > Closed;   

      }   

       

     Closed  {  

       butto nOrObstacle - > Opening; }   

       

     Opening  {   

          buttonOrObstacle - > HalfOpen;   

          reachTop - > Open;   

      }   

       

     HalfOpen  { buttonOrObstacle - > Opening; }   

  }   

}  

Listing 7: Sample generated system test 
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This example is for a simple garage door system. The testing of the generated system is 

performed by feeding the system with a number of events, and checking whether the system is in 

the expected state or not. For example, the system can be fed the following events. 

buttonOrObstacle   

reachedButtom  

buttonOrObstacle  

reachTop  

After these events, the expected state is Open. If the test case succeeds, we have more confidence 

that Umple generated systems work as expected. If such a test case fails, then we investigate 

where the failure took place. 

4.8 Summary  

Concurrent and nested state machines are the main topic of this chapter. We first introduced 

Umple syntax for these. We then presented the semantics of Umpleôs composite state machines, 

which were drawn to a large extent from the UML specifications. We also highlighted some of 

the outstanding issues that exist in the latest UML specifications and demonstrated when such 

inconsistencies occur. In some cases, Umple deviated from the UML specifications when there 

were convincing reasons. In other cases, Umple ironed out some of the undefined semantics.  

Composite state machines tend to be larger and more complex than simple machines. We 

demonstrated how Umpleôs textual representation can effectively represent large and complex 

state machine models. We also demonstrated the test-driven development approach adopted in 

Umple.  
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Chapter 5: Implementation of composite state machines  

This chapter focuses on code generation of composite state machine in Umple. As we explained 

in Chapter 4: Syntax and semantics of composite state machines, the code generation of 

composite state machine in Umple is novel. Umple uses a flattening approach termed Compress-

Flatten Code Generation (CFCG). In this chapter, we demonstrate this approach, and compare it 

to other code generation approaches for composite state machines. 

5.1 Convention  

Throughout this chapter, we adopt a convention to help illustrate the CFCG process. In the 

following sections, we illustrate how Umple flattens and generates the implementation code.  

Umpleôs meta-model (see Figure 12: Umple meta-model on page 57) is unaware of composite 

states.  The CFCG process therefore adds additional state machine elements to the meta-model to 

simulate the behavior of composite state machines, without adding additional complexity for the 

code generation templates. This approach allows us to make significant reuse of the 

implementation of simple state machines.  For example, a region in Umple is defined internally 

as a full state machine. This approach is explained in detail in this chapter. 

Clearly, this approach is not language specific. However, we use Java as a representative 

language. To distinguish between Java and Umple in this chapter, Java code will always appear 

in grey boxes. 

The code generation implementation approach presented in this chapter aims at generating code 

for all possible, and valid, state and transition combinations, while maintaining the relatively 

concise size of the generated code.  This approach is termed Compress-Flatten Code Generation 

(CFCG) summarized in Figure 29.  

 

 

Read input 

Model

Build the 

Parse Tree

simple state 

machine?

 

Generate 

Code

Add dummy 

states

Flatten state 

machine

Populate 

Meta-Model

Insert 

additional 

actions

Yes

No

 

Figure 29: CFCG Process 
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The CFCG process works as follows. Umple reads the input model, and builds the parse tree. 

The process distinguishes between two types of state machine models; a state machine that has at 

least one nesting level, or one concurrent region, is considered a complex state machine. The 

rationale is that such state machines require additional processing (compression and flattening) in 

order to generate concise state machine code. The path for simple state machines is discussed in 

ñChapter 3: Syntax and semantics of simple state machinesò. Here, we limit our discussion on 

aspects of the CFCG process related to nested and concurrent states. 

5.2 Composite state cases 

We demonstrate the code generation of composite states by demonstrating a number of cases.  A 

case is a composite state pattern. For example, a transition from an outer state to an inner state in 

a nested states environment is one case. Each of the following cases demonstrates one specific 

aspect of a composite state machine. For each case, we show 5 items as follows: 

1. The top left quadrant shows the input model visually. 

2. The top right quadrant shows the input Umple model. 

3. The lower left quadrant shows the flatted state machines visually. 

4. The lower right quadrant shows the algorithm adopted for code generation. 

5. The bottom shows an excerpt of the generated code.  

Note that for each case, only an excerpt of the generated code is presented. This is because the 

analysis of each case focuses on a specific aspect of code generation. Therefore, some questions 

may be left unanswered for some cases and should be cleared in the cases to follow. 

We use Java for the code generation language. But arguments in this chapter can easily be 

extended to any high level programming language. 

For simplicity, the models illustrated in this chapter ignore all types of actions, guards, and do 

activities.  The analysis, however, does address these model elements.  Later in this chapter, we 

present expanded examples that include all types of actions. 

5.2.1 Case 1: Transition to an inner state 

The first case we address is a transition to an inner state.  In our example, the state machine starts 

in state A. When the event óeô occurs, the transition to the inner state C takes place. This is 

equivalent to transition from state A to B, and then from state B to state C. 

Any exit action(s) from state A are called first, then transition actions, followed by any entry 

actions into B, and finally, entry actions into C.   
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class  ToInnerState  {  

 

  stateMachine {  

    A {  

      e - > C;  

    }  

    B {  

      C {}  

}  }  }  

 

StateMachine 

 

 

StateMachineB 

 

 

1. Flatten by generating stateMachine and 

StateMachineB. 

2. Set stateMachine to A (the start state) 

3. Set stateMachineB to Null (state B is not 

active) 

4. When event e occurs: 

¶ If state A is active, set stateMachineB 

to stateMachineB.C 

¶ Return true to indicate the event was 

processed. 

// Flattened state machines  

enum StateMachine { A, B }  

enum StateMachineB { Null, C }  

 

// Construction  

public  ToInnerState(){  
  setStateMachine(StateMachine.A);  
  if  (s tateMachineB ==  null) { setStateMachineB(StateMachineB.Null); }  
}  
 

// Event prcoessing  

public  boolean  e(){  
  boolean  wasEventProcessed =  false;  
  switch  (stateMachine)  {  
    case  A:  
      setStateMachineB(StateMachineB.C);  
      wasEventProcessed =  true;  
      break;  
  }  

}  

Figure 30: Transition to an inner state 

A 

B 

C 
e 

e 

A B 

e 

Null C 
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As shown in the abstracts of the generated code, Umple internally creates two state machines, the 

first state machine has two states, A and B. The second state machine is Null and C. 

Upon construction the first state machine is set to state A, and the second state machine is 

updated to state Null. As a matter of fact, the state Null is used to indicate that stateMachineB is 

not active; i.e., the higher level state machine is in some other state than B (here it is in state A). 

As with simple state machines, the event handler is generated as a public method. This method 

updates the state machine state by calling a private method setStateMachineB( ). This method 

encapsulates calls to any actions and do activities. This encapsulation is very important to our 

code generation approach for two reasons: 

1. It makes all event processing methods relatively small in size; they become easier to read and 

understand. 

2. It simplifies the code generation patterns. All event processing methods look very similar, 

and can therefore use the same code generation template. 

This state machine method is very simple: it encapsulates all method calls when transitioning 

from some state to another state. But also, this method allows for arbitrary complexity in the 

state machines the modeler can create; there are an unlimited number of combinations of source 

and destination states. For this reason, we will ignore the complexity of this method while we are 

discussing these code generation cases. The specifics of the code generation for this method are 

discussed in section  5.3 in this chapter. 

5.2.2 Case 2: Transition from an inner state 

This case is similar to the previous case except that the transition originates from an inner state to 

an outer state. 
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class  FromInnerState  {  

 

  stateMachine {  

    A { }  

    B {  

      C {  

        e - > A;  

      }  

}  }  }  

 

stateMachine 

 

 

 

StateMachineB 

1. Flatten by generating stateMachine and 

StateMachineB. 

2. Set stateMachine to A (the start state) 

3. Set stateMachineB to Null (state B is not 

active) 

4. When event e occurs: 

¶ If state C is active, set stateMachineB 

to Null. 

¶ Set stateMachine to A. 

¶ Return true to indicate the event was 

processed. 

A 

B 

C 
e 

e 

A B 

e 

Null C 

Figure 31: Transition from an inner state 
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// F lattened state machines  

enum StateMachine { A, B }  
enum StateMachineB { Null, C }  
 

 

// Construction  

  public FromInnerState()  

  {  

    setStateMachineB(StateMachineB.Null);  

    setStateMachine(StateMachine.A);  

  }  

 

// Event processing  

public  boolean  e()  {  
  boolean  wasEventProcessed =  false;  
  switch  (stateMachineB)  {  
    case  C:  
      setStateMachine(StateMachine.A);  
      wasEventProcessed =  true;  
      break;  
  }  

}  

Continued Figure 31: Transition from an inner state 

The code generation for this case is similar to the previous case, which is an objective we strive 

to maintain in Umple; similar state machines should have similar code generation patterns. 

The difference here is in the event processing method. In response to the event óeô, and if the 

state machine is in state C, we update the state machine state to A. This is also encapsulated in a 

single method call setStateMachine( ). 

The coming cases entail regions and concurrency. In our implementation, we consider every 

region to be a full-fledged state machine; a region may have one or more state machine elements 

of any type, such as a start state, end states, ordinary states and transitions. This view of regions 

allows us to recursively define regions without having to define a new region element. This is 

similar to a nested state, where a state can itself contain a state (a substate). 

5.2.3 Case 3: Transition to a concurrent state  

In this case (Figure 32), the state machine starts in state A. When the event óeô occurs, the 

transition from state A to the composite state M takes place. Instantaneously, the two regions C 

and D become active. 
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Umple creates internally three state machines; StateMachine that has two states, A and M; 

StateMachineC that has two states, null and C; and finally StateMachineD that has two states 

null and D. 

Note that we use the dummy state null in a consistent manner. If a state machine is in state null, 

it means that the state machine is not active. In this case, if the state machine is in state A, then 

both regions C and D are set to null . 

 

 

 

 

 

 

class  ToConcurrentState {  

  stateMachine {  

   

    A {  

      e - > M;  }  

    M {  

      C {}  

      ||  

      D {}  

}  }  }  

 

stateMachine 

 

 

stateMachineC 

 

 

stateMachineD 

1. Flatten by generating stateMachine and 

StateMachineC and stateMachineD. 

2. Set stateMachine to A (the start state) 

3. Set stateMachineC to Null. 

4. Set stateMachineD to Null. 

4. When event e occurs: 

¶ Set stateMachine to M. 

¶ Set stateMachineC to C 

¶ Set stateMachineD to D. 

¶ Return true to indicate the event was 

processed. 

A 

M 

C 

D 

e 

e 

A M 

e 

Null C 

e 

Null D 

Figure 32: Transition to a concurrent state 
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// Fla ttened state machines  

enum StateMachine { A, M }  
enum StateMachineC { Null, C }  
enum StateMachineD { Null, D }  
 

// Construction  

public ToConcurrentState() {  

  setStateMachineC(StateMachineC.Null);  

  setStateMachineD(StateMachineD.Null);  

  setStateMachine(S tateMachine.A);  

}  
// Event prcoessing  

public  boolean  e()  {  
  boolean  wasEventProcessed =  false;  
  switch  (stateMachine)  {  
    case  A:  
      setStateMachine(StateMachine.M);  
      wasEventProcessed =  true;  
      break;   
  }  
  return  wasEventProcessed;  
}  
 

Continued Figure 32: Transition to a concurrent state 

At construction, the state machine is set to state A. The two other state machines (stateMachineC 

and stateMachineD) are set to state null. 

When the event óeô occurs, the state machine becomes in state M. The method 

setStateMachine(stateMachine.M) updates the states for the two regions C and D and calls entry 

and exit actions, if any. 

Notice the level of similarity between event processing methods in the previous cases, even 

though the transition is of a different nature.  This similarity was achieved by means of hiding 

the transition details in a single method call. 

5.2.4 Case 4: Transition from a concurrent state 

This case demonstrates a scenario when a transition out of a composite state is taking place. In 

this example, the state machine starts in state M, which has two concurrent regions, C and D. 

The event óeô triggers a transition out of the composite state. 
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class  FromConcurrentState {  

  stateMachine {  

    M {  

      e - > A;  

      C {}  

      ||  

      D {}  

    }  

    A {}  

}  }  

 

 

stateMachine 

 

 

stateMachineC 

 

 

stateMachineD 

1. Flatten by generating stateMachine and 

StateMachineC and stateMachineD. 

2. Set stateMachine to M (the start state) 

3. Set stateMachineC to C. 

4. Set stateMachineD to D. 

4. When event e occurs: 

¶ Set stateMachine to A. 

¶ Set stateMachineC to Null 

¶ Set stateMachineD to Null. 

¶ Return true to indicate the event was 

processed. 

A 

M 

C 

D 

e 

e 

M A 

e 

C Null 

e 

D Null 

Figure 33: Transition from a concurrent state 
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// exiting a composite state  

 

public  boolean  exitM()  {  
  boolean  wasEventProcessed =  false;  
  switch  (stateMachin eC)  {  
    case  C:  
      setStateMachineC(StateMachineC.Null);  
      wasEventProcessed =  true;  
      break;  
  }   
 

  switch  (stateMachineD)  {  
    case  D:  
      setStateMachineD(StateMachineD.Null);  
      wasEventProcessed =  true;  
      break;  
  }  

}  

Continued Figure 33: Transition from a concurrent state 

When exiting a simple state, a single switch statement suffices. In our case, a concurrent state 

with two regions requires two switch statements. The first switch statement checks if the region 

C is active, and if so, updates the state machine to null using the method setStateMachineC, 

which also handles any exit actions.  The second switch statement performs the same steps for 

region D. 

5.2.5 Case 5: Reflexive transition of a concurrent state 

This case focuses on the implementation of a reflexive transition. A reflexive transition is just 

another transition whose source state and destination state are the same.   

A reflexive transition of a composite state with two concurrent regions behaves as follows: 

1. Call exit actions associated with any state being exited, including the composite state itself. 

Starting with the innermost state and working your way outward. 

2. Exit all regions of the concurrent state; 

3. Call transition actions, if any; 

4. Re-enter the concurrent state; 

5. Re-enter each concurrent region; 

6. Call entry actions of any state being entered including the composite state itself. 
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According to the state machine semantics, exiting both regions takes place at the same time. 

However, if you are executing the state machine in a single threaded environment, one region 

will be exited before the other. Due to the sequential nature of the Umple textual notation, Umple 

determines that the region that is declared first will be exited first. To override such behavior, 

one can simply re-order the regions so that region D is declared before region C.  The same 

applies for entering a concurrent region in step 5 above. 

 

 

 

 

 

 

 

class  Reflexive  {  

  stateMachine {  

    A {  

      e - > M;  

    }  

   

    M {  

      e - > M;  

      C {}  

      ||  

      D {}  

}  }  }  

e 

A 

M 

C 

D 

e 

Figure 34: Reflexive transition of a concurrent state 
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stateMachine 

 

 

 

stateMachineC 

 

 

 

stateMachineD 

1. Flatten by generating stateMachine and 

StateMachineC and stateMachineD. 

2. Set stateMachine to A (the start state) 

3. Set stateMachineC to Null. 

4. Set stateMachineD to Null. 

5. When event e occurs: 

¶ Set stateMachine to M, set 

stateMachineC to C, and set 

stateMachineD to D. 

6. When event e occurs (triggering the 

reflexive transition): 

¶ Call exitStateMachine() method, which 

exits all regions of M and exits M itself. 

¶ Set stateMachine to M (re-entering 

composite state) 

¶ Set stateMachineC to C 

¶ Set stateMachineD to D. 

¶ Return true to indicate the event was 

processed. 

e 

e 

A M 

e 

e 

Null D 

e 

e 

Null C 

Continued Figure 34: Reflexive transition of a concurrent 

state 
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// Reflexive transition of a concurrent state  

public  boolean  e()  {  
  boolean  wasEventProcessed =  false;   
  switch  (stateMachine )  {  
    case  A:  
      setStateMachine(StateMachine.M);  
      wasEventProcessed =  true;  
      break;  

 
    case  M: 
      exitStateMachine();  
      setStateMachine(StateMachine.M);  
      wasEventProcessed =  true;  
      break;  
  }   
  return  wasEventProcessed;  
}  

 

Continued Figure 34: Reflexive transition of a concurrent state 

Note the switch statement in the generated code. The first case handles the behavior when the 

state machine is in state A. The second case handles the situation when the state machine is in 

state M. Our focus here is on the second case. The following takes place: 

1. Calling the method exitStateMachine( ) which encapsulates the logistics of exiting all 

regions. 

2. Re-entering the state M by calling the method setStateMachine(StateMachine.M( )) 

3. Updating the Boolean variable to indicate that the event was processed 

5.2.6 Case 6: Transition into an inner state in a concurrent region 

This case explores a scenario when a transition to an inner state which lies inside a concurrent 

region. This case is special because even though the transition explicitly enters one region, the 

second region must also be activated. 

In our example below, the state machine is initially in state A. When the event óeô occurs, the 

state machine instantaneously enters the concurrent state M and also instantaneously enters state 

E. In that situation, the state machine is in state M, and in state E. Both regions C and D are 

active. 
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class ToConcurrentState {  

  stateMachine {  

    A {  

      e - > E;  

    }  

    M {  

      C {  

        E {  entry /{ inside_E; }  }  

      }  

      ||  

      D {}  

}  }  }  

stateMachine 

 

 

 

stateMachineC 

 

 

stateMachineCC 

 

 

stateMachineD 

1. Flatten by generating stateMachine and 

StateMachineC, stateMachineCC, and 

stateMachineD. 

2. Set stateMachine to A (the start state) 

3. Set stateMachineC to Null. 

4. setStateMachineCC to Null. 

5. Set stateMachineD to Null. 

5. When event e occurs: 

¶ Set stateMachine to M. 

¶ Set stateMachineC to C. 

¶ Set stateMachineCC to E. 

¶ Set stateMachineD to D. 

¶ Return true to indicate the event was 

processed. 

e 

e 

Null D 

e 

A M 

e 

Null C 

e 

Null E 

A 

M 

C 

D 

E 

Figure 35: Transition to an inner state in a concurrent 

region 
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// Flattened state machines  

enum StateMachine { A, M }  
enum StateMachineC { Null, C }  
enum StateMachineCC { Null, E }  
enum StateMachineD { Null, D }  
 

// Event processing  

public  boolean  e()  {  
  boolean  wasEventProcessed =  false;  
  switch  (stateMa chine)  {  
    case  A:  
        setStateMachineCC(StateMachineCC.E);  
         wasEventProcessed =  true;  
        break;  
    }  
  return  wasEventProcessed;  
}  

 

 

private  void  setStateMachineCC(StateMachineCC aStateMachineCC)  {  
  stateMachineCC = aStateMachineCC;  
  if  (stateMachineC != StateMachineC.C && aStateMachineCC !=    

  StateMachineCC.Null) { setStateMachineC(StateMachineC.C); }  

  
  // entry action  
  switch(stateMachineCC)  {  
    case  E:  
        inside_E;  
        break;  
    }  
  }  

}  
 

Continued Figure 35: Transition to an inner state in a concurrent region 

This case results in four internal state machines as shown in the generated code above. Notice 

how the event processing method is very similar to other cases. This is because the public 

method óeô delegates to the method setStateMachineCC that calls the entry action and updates 

the state machineôs states. 

5.2.7 Case 7: Transition from an inner state of a concurrent region 

This case is similar to the previous case. When the state machine is in the M state, and the event 

óeô occurs, the transition from the inner state E, which lies in the concurrent region C, takes 

place. 
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class FromConcurrentState {  

  stateMachine {  

   

    M {  

      C {  

        E {  

          e - > A;  

       }  

      }  

      ||  

      D {}  

    }  

    A {}  

}  }  

 

stateMachine 

 

 

stateMachineC 

 

 

stateMachineCC 

 

 

stateMachineD 

1. Flatten by generating stateMachine and 

StateMachineC, stateMachineCC, and 

stateMachineD. 

2. Set stateMachine to M (the start state) 

3. Set stateMachineC to C. 

4. setStateMachineCC to E. 

5. Set stateMachineD to D. 

5. When event e occurs: 

¶ Call the method exitStateMachine() 

which handles exiting substates and 

calling actions. 

¶ Set stateMachine to A. 

¶ Return true to indicate the event was 

processed. 

e 

A 

M 

C 

D 

E 

e 

D Null 

e 

M A 

e 

E Null 

e 

C Null 

Figure 36: Transition from an inner state of a concurrent 

region 
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// Event processing  

 

public  boolean  e() {  

  boolean  wasEventProcessed =  false;  

  switch  (stateMachine) {  

    case  M: 

      exitStateMachine();  

      setStateMachine(StateMachine.A);  

      wasEventProcessed =  true;  

      break;  

    }  

  return  wasEventProcessed;  

}  

 

Continued Figure 36: Transition from an inner state of a concurrent region 

5.2.8 Case 8: Concurrent state is the start state 

This case shows a situation when the state machine start state is a concurrent state. This is a 

controversial model. We discussed this controversy in the previous chapter in the section ñA 

higher level transition to composite states with regions without start stateò on page 82. The 

execution semantics of such a model can be interpreted in one of three ways; 

1. The model is invalid and Umple should throw a syntactic error. 

2. The state machine becomes in state M, and enters the two concurrent regions, and enters 

states S1 and S2. 

3. The state machine becomes in state M, but does not enter any of the states in the concurrent 

regions. 

In Umple we adopt alternative 2, following the rule that when in a region, you must always be in 

a substate of that region. 
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class  ConcurrentState {  

  stateMachine {  

   

    M {  

      C {  

        S1 {}   

      }  

      ||  

      D {  

        S2 {}   

}  }  }  }  

stateMachine 

 

stateMachineC 

 

stateMachineCC 

 

 

stateMachineD 

 

stateMachineDD 

 

1. Flatten by generating stateMachine and 

StateMachineC, stateMachineCC, 

stateMachineD, and stateMachineDD. 

2. Set stateMachine to M 

3. Set stateMachineC to C. 

4. setStateMachineCC to S1. 

5. Set stateMachineD to D. 

5. Set stateMachineDD to S2. 

 

// Construction  

    setStateMachineC(StateMachineC.Null);  

    setStateMachineCC(StateMachineCC.Null);  

    setStateMachineD(StateMachineD.Null);  

    setS tateMachineDD(StateMachineDD.Null);  

    setStateMachine(StateMachine.M);  

 

Figure 37: Concurrent state is the start state 

As shown, the constructor initiates the state machine M and sets the start state for the two 

regions. 

C Null 

S1 Null 

M 

D Null 

S2 Null 

S1 

S2 
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5.3 State transition method  

As we have demonstrated in the previous code generation cases, there are many variations of 

state transitions. The following are the characteristics of such variations: 

1. Is the source state a simple state or composite state? 

2. If the source state is composite, is it nested or concurrent? 

3. Are there any states being exited that have exit actions associated with them? 

4. Does the transition have any transition action associated with it? 

5. Is the destination state a simple state or a composite state? 

6. Are there any entry actions associated with any state being entered? 

The answers to the questions above demonstrate some of the complexity inherent in 

implementing transitions. Even though Umpleôs philosophy states that a software developer need 

not to look at or modify the generated code, we strived to make the generated code simple and 

easy to understand. 

It turns out that simpler code generation is also easier to implement. If we are able to make event 

processing functions look similar, we will be able to use simpler code generation templates to 

implement them. 

We were able to achieve this simplicity by abstracting common processing elements in any event 

processing method and encapsulating the details in other methods (typically private methods) 

that are called internally. It is worth mentioning that the abstraction process was achieved 

incrementally by means of trial and error. As we were adding additional features into the state 

machine, we hit roadblocks of highly complicated code generation templates. Rather than 

struggling with complicated code generation templates, we tried to take a few steps back, and 

reconsider the implementation of code generation. Encapsulation of details worked well in many 

situations. We will demonstrate by drilling down in the state transition function of two of the 

cases described before. 

To demonstrate the complexity of implementing a transition, and how Umple handles this 

complexity, we will reuse two of the cases presented earlier in this chapter.  For this analysis, we 

assume that all transitions have both a guard G and an action A associated with them. We also 

assume that every state has an entry and exit action. 
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5.3.1 Entering a composite state 

This analysis is based on a modified state machine in case 3 above. The modified Umple model 

looks as follows 

class  ToConcurrentState {  

  stateMachine {  

   

    A {  

      e [ G] - > /{transition_action () ;} M; }  

    M {  

      entry / {entering_M;}  

      C { cState {entry/ {entering_C () ;}  } }  

      ||  

      D {  dState {entry/ {entering_D () ;}  } }  

}  }  }  

Listing 8: Entering a composite state 

This model adds a guard, and two entry actions. The code that implements the transition from A 

to M is as follows: 

Step1: Public function to handle the event processing 

public  boolean  e()  {  
  boolean  wasEventProcessed =  false;  
  switch  (stateMachine){  
    case  A:  
      if  (G)  {  
        transition_action;  
         setStateMachine(StateMachine.M);  

        wasEventProcessed =  true;  
      }  
      break;   
  }  
  return  wasEventProcessed;  
}  

Listing 9: Step 1 

The public method is named after the event name. In this case, the public method is named óeô. 

This method returns a Boolean value to indicate whether the event has been processed or not. 

Checking for the guard takes place within this method (as highlighted above). The method also 

calls the transition action right after checking for the value of the guard.  The method then 

delegates the rest of the transition execution to setStateMachine(StateMachine.M). 
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Step 2: setStateMachine(StateMachine.M) 

This is a generic method that is used to update the state of any state machine. 

private  void  setStateMachine(StateMachine aStateMachine)  {  
  stateMachine = aStateMachine;   
  // entry actions  
  switch(stateMachine)  {  
    case  M: 
      entering_M;  
      if  (stateMachineC == StateMachineC.Null) {   

        setStateMachineC(StateMachineC.C); }  
      if  (stateMachineD == StateMachineD.Null) {  

        setStateMachineD(StateMachineD.D);  

      }  
      break;  
   }  
}  

Listing 10: Step 2 

This method will call any entry actions. In this case, entering_M is called. 

We note here that the entry action is called prior to updating the state machine configurations (i.e 

prior to updating the state machine attributes).  Therefore, if the entry action queries the state 

machine, inaccurate values will be returned. 

Notice that initially, both regionsô states are set to null (see Case 3: Transition to a concurrent 

state on page 99). This method checks if the region is in the null state, and if so, it will delegate 

to setStateMachineC and setStateMachineD respectively. For brevity, we only analyze 

setStateMachineC. 
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Step 3: setStateMachineC(StateMachineC.C) 

pr ivate  void  setStateMachineC(StateMachineC aStateMachineC)  {  
  stateMachineC = aStateMachineC;  
  if  (stateMachine != StateMachine.M && aStateMachineC != StateMachineC.Null)    

    { setStateMachine(StateMachine.M); }  
  
  // entry actions  

 
    switch(stateMa chineC)  {  
      case  C:  
        if  (stateMachineCC == StateMachineCC.Null) {    

          setStateMachineCC(StateMachineCC.cState);  

        }  
        break;  
    }   

  }  

}  

Listing 11: Step 3 

This method would call any entry actions. In this case, there are no entry actions associated with 

the stateMachineC. The method updates the state machine state to cState by means of delegation 

to StateMachineCC.cState. 

Step 4: setStateMachineCC(StateMachineCC.cState) 

private  void  setStateMac hineCC(StateMachineCC aStateMachineCC)  {  

  // entry actions  
  switch(stateMachineCC)  {  
    case  cState:  
      entering_C;  
      break;  
}  }  }  

Listing 12: Step 4 

This method finally calls the entry action for the cState. 

5.3.2 Exiting a composite state 

The steps for exiting a composite state machine are very similar to entering a composite state 

machine. Again, this similarity makes it easier to follow the generated code, and makes the code 

generation templates less complex. For brevity, we show the method for exiting the composite 

state M. 
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public  boolean  exitM()  {  
  boolean  wasEventProcessed =  false;  
  switch  (stateMachineC)  {  
    case  C:  
      exitStateMachineC();  
      setStateMachineC(StateMachineC.Null);  

      wasEventProcessed =  t rue;  

      break;  

  }  

 

  switch  (stateMachineD)  

  {   

   ..  

   ..  

} }  

Listing 13: Exiting the composite state 

When exiting the composite state M, we also exit stateMachineC and stateMachineD. For 

brevity, we analyze the steps for exiting stateMachineC. 

Again, we delegate to exitStateMachineC for the handling of exit actions, if any, and for 

updating the state machine state. Notice that when we exit the state machine, we set its state to 

null. 

5.4 Code generation templates  

Umple uses Java Emitter Templates (JET) technology to specify what the generated code should 

look like [48]. The JET templates are then compiled into Java code that generates the code in 

various languages, given an instance of the Umple Metamodel. 

Each supported language in Umple has its own JET templates. For Java alone, there are 138 JET 

templates. The complete listing of Umple JET templates is part is available on the Umple Google 

Code project.  The templates supporting Java is available at this location: 

 http://cod e.google.com/p/umple/source/browse/# svn/trunk/UmpleToJava 

The following table summarizes key templates and briefly describes their function. 
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Table 10: Key code generation templates 

 Template name (*.JET) Function 

1 members_AllStateMachines Loops over all state machines and handles naming for 

state machine generated code. 

2 state_machine_Event Handles code for state machine events and events 

handling methods. 

3 state_machine_Event_StartStopT

imer 

Outputs the method for starting and stopping timers for 

time-based events. 

4 state_machine_Events_All High level template that calls the  

state_machine_Event template. 

5 state_machine_IsFinal Handles code for final states. 

7 state_machine_SetSimple Handles the code for setting simple state machines. 

8 state_machine_Set_All High level template that loops over all state machines. 

For simple states the template calls 

state_machine_setSimple, and calls 

state_machine_Set.jet otherwise. 

9 state_machine_doActivity Handles code for do activities. 

10 state_machine_doActivityThread Handles the generated code for threading in Java. 

11 state_machine_doActivity_All A high level template for handling do activities. 

12 state_machine_timedEvent_All High level template for handling timed events. 

 

5.5 Multiple state machines in the same class  

An Umple class may contain an unbounded number of state machines. Those state machines may 

interact with each other in a number of ways.  The following Umple model (Listing 14) 

illustrates two examples of such interactions. 

In this example, the class Phone has three state machines; ringerSound, screenLight and 

Vibration.  Initially, the ringer, the screen light and vibration are Off. When a call is received, the 

ringer sounds, the light turns on, and the vibration starts vibrating. The model abstracts some of 

the remaining common phone functionality. 
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c lass  Phone {  

  Integer t_ringer;  

  Integer t_light;  

 

  ringerSound  {  

    Off {  

      callReceived - > On ;  

    }  

     

    On{  

      silentButton - > Off ;  

      pickUp - > / {setVibration(Vibration.Off);} Off ;  

      rejectCall  - > / { turnOffVibration() ;}  Off ;    

      after(t_ringer) - > Off ;    

    }  

  }  

 

  screenLight  {  

    Off {  

      callReceived - > On ;   

    }  

 

    On{  

      callReceived - > / {rese tTimer();}  On ;  

      after(t_light) - > Dimmed;  

    }  

  

    Dimmed{  

      callReceived - > On ;  

      after(t _light ) - > Off;  

    }  

  }  

 

  vibration  {  

    Off  {  

      callReceived - > On ;  

      }  

 

    On{  

      turnOffVibration - > Off ;  

} }  }  

Listing 14: Phone state machine 

There is a difference between the semantics of multiple state machines in the same class, and 

concurrent regions in a composite state machine. In a concurrent state machine, the two regions 

are executing in parallel, while in a multiple state machine in the same class, the state machines 

are executing in sequence. The main benefit of supporting multiple state machines within the 
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same class is to allow every state machine to handle one aspect of the behaviour of the object. 

This approach helps in separation of concerns and can enhance the usability of mixins and state 

machine inheritance. 

5.5.1 Single event causing multiple transitions 

Within a single state machine, an event can at most cause a single transition. However, and 

because an Umple class may have more than one state machine, a single event may actually 

trigger a transition in more than one state machine. 

In Listing 14, the callReceived event may cause a transition in the three state machines within the 

class Phone. Umple recognizes this special event, and groups all the behavior to implement the 

event handling into a single method (Listing 15). 

public boolean callReceived() {  

  boolean wasEventProcessed = false;  

  switch (ringerSound) {  

    case Off:  

      ..  

      break;  

  }  

   

  switch (screenLight) {  

    case Off:  

      ..  

    case On:  

      ..  

    case Dimmed:  

      ..  

    }  

  }  

 

  switch  (vibration){  

    case  Off:  

      ..  

    }  

  return  wasEventProcessed;  

  }  

}  

Listing 15: Single event causing multiple transitions 
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5.5.2 Action in a state machine triggers an event of another state machine 

An action within a state machine (entry, exit, or transition) can trigger an event that may cause a 

transition in another state machine. In the ringerSound state machine, when a call is rejected, a 

transition to Off is triggered. This transition calls an event of another state machine that results in 

another transition being triggered, a transition from On to Off in the Vibration state machine. 

5.5.3 Action in a state machine updates the state of another state machine 

An action within a state machine (entry, exit, or transition) can update the state of another state 

machine. Consider this transition in our example: 

      pickUp - > / {setVibration(Vibration.Off);} Off ;  

When a call is picked up, a transition from On to Off takes place. The action on this transition 

updates the Vibration state machine to Off. This is commonly called a side effect of a transition; 

not a desirable feature of a state machine and developers must use it with care. 

Notice that there is a difference between this action (setVibration(Vibration.Off);)) and (turnoff 

Vibration();). The first action updates the Vibration state machine without calling any entry, exit 

or transition actions within that state. However, the second action would result in execution of all 

involved actions in the transition. This feature enables the users to easily override a state 

machine behavior when needed. 

5.6 Traditi onal flattening approach  

The explosion phenomenon that occurs when flattening a composite state machine is explained 

here [49]. To briefly demonstrate this phenomenon, we present a modified example from 

Schaumontôs book [50]. 
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c lass  TraditionalFlattening{  

 

  status {  

    R {  

      One {  

        e - > Two;  

      }  

      Two {  

        e - > Three;  

      }  

      Three {  

        e - > One;  

      }  

      ||  

    M {  

      A {  

        e - > B;  

      }  

      B {  

        e - > C;  

      }  

      C {  

        e - > A;  

      }  

    }  

  }  

}  

 

Figure 38: explosion phenomenon 

This composite state machine can be in nine possible configurations (A and 1, A and 2, A and 3, 

B and 1, B and 2, B and 3, C and 1, C and 2, C and 3). Therefore, to flatten this state machine, 

the resulting simple state must have at least nine states (A1, A2, A3, B1, B2, B3, C1, C2, C3).  If 

there was another region with another 3 states, the total number of flattened states jumps to 27 

(3*3*3). 

There are several research streams that are investigating the ability to generate code from state 

machines without the need for flattening the state machine to avoid un-scalable exponential 

growth in the generated code [51, 52] . However, these approaches typically ignore practical 

considerations for the generated code; as we explored in this chapter, one consideration for 

example is that similar state machine models should generate similar code. 

In the case of 3*3 (Figure 38), using Umple results in eight states. Not a significant improvement 

over the standard flattening that results in nine states. But in the case of 3*3*3, the standard 

flattening results in 27 states, and Umple generates 12 states.  Figure 39 summarizes the 

comparison for the number of generated states for Umple and the traditional flattening approach.  

The figure shows the number of generated states for the simple case of a state machine with 3 
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states, a concurrent state with 3*3 states, and up to a concurrent state machine with five 

concurrent regions with 3 states each. 

 

Figure 39: comparison of flattening approaches 

As shown in the figure, the traditional flattening approach quickly outnumbers the number of 

states generated by Umple, even when the null dummy states are included. 

5.7 Comparison of code generation approaches  

In this section, we compare our CFCG code generation approach to that of a commercial tool 

(Rhapsody) and a research tool whose authors (Niaz et al) claim a novel approach of generating 

efficient and compact code for composite states. 

Rhapsody implements state machines using the multiple-class pattern and creates objects that 

represents states upfront; i.e, as soon as the state machine becomes active.  These objects stay in 

memory as long as the state machine is executing.  Rhapsody uses a switch statement and a 

helper class to implement the state machine behavior.  We discuss the pros and cons of multiple-

class pattern in section ñ Multiple-class patternò on page 35. 

The research tool proposed by Niaz also uses multiple-class pattern where each state is 

implemented in a separate class.  However, objects are not created upfront, rather, objects are 

created and deleted at run time.  This makes the expected performance of this tool to be better 

than Rhapsody.  Niazôs approach implements composite state machines by using object 

composition and delegation.  In our comparison, we adopt a criteria similar to Niazôs [53] that 
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relies on the number of lines of code, number of bytes, and number of classes. For the base 

comparison, we consider the example in Figure 40. 

In many cases, we were unable to compare our approach to other tools discussed in section 

ñCode Generation from State Machinesò on page 31 due to the fact that many of the available 

commercial and research tools do not support composite states in a way complete enough to 

allow this comparison. For example, Bridgepoint  [28] does not allow substates or guards.  

Wasowskiôs approach[51] evaluates code generation for composite states with a focus on 

efficiency of the execution time of the generated code. Our focus is on the number of lines of the 

generated code. 

 

 

 

 

 

 

The example is comprised of two simple states, and one state with two concurrent regions. 

Table 11: code generation comparison 

Generated code Rhapsody Niaz, I.A Umple generated Code Umple 

Number of lines 675 250 125 8 

Number of bytes 24,270 6,420 5,010 197 

Number of classes 7 11 1 1 

 

As shown, the number of lines of code is significantly lower in the case of Umple (reduction of 

about 50% as compared with Niaz`s approach). The number of bytes are less in the case of 

Umple (a reduction of about 22%). 

5.7.1 Generated code growth analysis 

The comparison in the previous section does not tell us how the generated code grows as the 

input model grows. We have conducted an estimate of the code generation by studying the 

generated code. We measured a factor of growth for every code section (a function of a code 

blocks) by analyzing how the code would grow when the number of states grows. For example, 
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Figure 40: Composite state comparison example 
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an event is translated into a public event handler method (i.e one line of code). Two events are 

translated into two lines of code (a growth factor of 1). 

This study results in a growth analysis summarized in Figure 41. 

 

Figure 41: Factor of growth analysis 

The study looks at models growth at a factor of 10, 20, and 50. The study compares Rhapsody, 

Niaz I.A, Umple generated Java, and Umple source models. This study implies that CFCG code 

generation approach results in significant reduction in code generation for larger models. 

5.8 Summary  

The majority of the modeling tools we surveyed did not handle code generation for composite 

state machines, maybe on the premise that any composite state machine model can be flattened 

into a simple state machine model. We quickly realized that we can further distinguish Umple by 

a careful analysis of all possible combinations of states and transitions. In the course of this 

analysis, we identified some undefined semantics in the UML specifications that we tried to 

handle in Umple. 

We named our approach for code generation ñCompress-Flatten Code Generationò. This 

approach avoids explosions of composite state machines by internally creating dummy states and 

transitions. This chapter demonstrated this novel code generation approach by demonstrating a 

number of ócode generation casesô. Each case uncovers some aspects of the compress-flatten 

code generation technique. 

We also presented, in great detail, how we implement the state transition method, and how 

Umple supports having an unbounded number of state machines in the same class.  Finally, we 

compared Umple to two other modeling tools.  This comparison indicates that Umple syntax is 

concise and tends to generate relatively fewer lines of code. 
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Chapter 6: A Grounded theory study of Umple  

This chapter presents a grounded theory study to gather knowledge about perceptions of the 

usability of the Umple language. This is a long-running study that we conducted as the state 

machine capability in Umple was being developed. The objective is to gather userôs feedback for 

existing aspects of Umple as they were being developed and use the findings to guide future 

development. Hence, a significant portion of the study addresses the work done prior to state 

machines being implemented in Umple, namely associations and attributes. 

Grounded theory studies do not have hypotheses. Rather, the analysis of the data is expected to 

bring about theories about the domain being investigated.  Our study does not have a hypothesis 

either. Our goal is that by studying Umple early adopters feedback, we can guide Umpleôs 

experimental development so that the resulting product can achieve the benefits claimed. 

We start by first exploring the domain of using grounded theory (GT) studies in the area of 

software engineering.  This survey helps us understand how GT have been used in the software 

engineering domain.  We then present the grounded theory study of Umple users. 

6.1  Survey of grounded theory in software engineering  

Grounded theory (GT) is a systematic qualitative research methodology, originating in the social 

sciences, and emphasizes the generation of theory from qualitative data in the process of 

conducting research.  Grounded theory, in its original form, was proposed by Glasser and Strauss 

in 1967 [54].  However, it was not until 1993 that we could find the first significant grounded 

theory work applied in software engineering [55].  Since that date, more researchers have 

adopted the process and the GT has been supported by promising results.  There is a limited, but 

increasing, body of literature reporting the application of grounded theory in software 

engineering (SE) disciplines.  Nevertheless, GT applications in SE are still very limited, mostly 

likely due to the complexities of conducting GT methodology in SE.  The GT methodology, we 

argue, requires adaptation for successful employment in the SE world.  The contribution of this 

chapter is to provide meta-codes that can be used to drive the initial coding phase of GT.  We 

also provide an analysis of existing GT applications in software engineering and the 

characteristics of such applications as exhibited in the existing literature. 

This section is organized as follows. We first present a brief history of grounded theory and its 

application in the software engineering arena.  Then, we present the methodology we adopt to 

survey, categorize, and analyze GT coding.  The subsequent three sections present a literature 

review and the meta-codes thematically organized by the application of grounded theory in agile 

development, distributed development, and requirements engineering.  The remainder of this 
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section presents some GT characteristics that are specific to applications in software engineering 

and an overview of where GT has been successful and where challenges exist in the application 

of GT in software engineering. 

6.1.1 Background and History 

Grounded Theory is a systematic qualitative research methodology that emphasizes the 

generation of theory from data.  Grounded theory operates almost in a reverse fashion to the 

traditional scientific method.  Rather than proposing a hypothesis and gathering data to support 

it, data collection is pursued first, without any preconceptions. This ad-hoc characteristic is of 

great interest from our perspective because it allows us to study Umple userôs perspective 

without having to have any hypothesis.  The process continues by marking key points in the data 

with a series of ócodesô, which are then grouped into similar concepts, or categories.  These 

categories become the basis of a theory.  The coding process is typically performed in two steps, 

initial then focused coding.  The categorization process is normally referred to as axial coding. 

Grounded theory emerged as a research methodology in the 1960s, during a time when 

sociological research practices were particularly reliant on quantitative methodologies.  In 1967, 

Glaser and Strauss coined the term grounded theory in their book ñThe Discovery of Grounded 

Theoryò [56].  The term refers to the idea of a theory that is generated by ï or grounded in ï an 

iterative process of analysis and sampling of qualitative data gathered from concrete settings, 

such as interviews, participant observation, and archival research. 

The roots of this methodology can be traced back to the work of Wilhelm Dilthey who argued 

against the pursuit of causal explanations at the expense of establishing understanding. Grounded 

theory methodology can also be traced back to the symbolic interactionist perspective of Herbert 

Blumer [57].  The term "symbolic interaction" refers to the peculiar and distinctive character of 

interaction as it takes place between human beings. The peculiarity consists in the fact that 

human beings interpret or "define" each other's actions instead of merely reacting to each other's 

actions. 

Since GTsô inception in the social sciences, grounded theory has become increasingly popular in 

information systems as a research methodology.  This is evident by the growing literature on the 

methodology and its applications.  The first publication we were able to identify as an 

application of grounded theory in the area of software engineering was the work by Calloway 

and Ariav [58] and Torasker [59] in 1991.  In these publications, the researchers described how 

they adopted grounded theory in understanding how managerial users evaluate their decision 

support systems. 

The first international journal publication of a grounded theory application in software 

engineering is that of Orlikowski in 1993 [55].  In this work, the researcher presents findings of a 

study into the adoption of CASE tools.  The researcher justified the use of grounded theory as a 
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research methodology on the basis that it provided ña focus on contextual and processual 

elements as well as the action of key players associated with organizational change elements that 

are often omitted in IS -Information Systems- studiesò [55]. 

More recently, Baskerville and Pries-Heje [60] employed grounded theory combined with action 

research to enhance the rigor and traceability in the theory-development part of their work.  

Action research is a reflective process of progressive problem solving led by individuals working 

with professionals to improve the way they address issues and solve problems.  Other work has 

employed grounded theory to initiate more focused data collection activities [61]. 

Grounded theory applications have extended to other arenas within software engineering.  While 

the literature is limited, the most prominent discipline of grounded theory work is in software 

development methodologies, as evident in the quantity of published work in this discipline.  Out 

of the 60 research papers identified as applications of grounded theory in software engineering, 

25 addressed software development methodology.  Other sub-disciplines with significant bodies 

of GT research include requirements engineering and distributed software development 

practices. 

We believe that GT is a research methodology particularly useful for software engineering 

research for reasons that include: 

- Software development is a human intensive process; software is used by humans with 

complex interaction and usage patterns, where quantitative evidence is nonexistent or 

difficult to formulate,  

- GT provides an effective approach for qualitative validation.   

The low and slow adoption of GT methodology in SE is due to a number of factors.  GT 

originated in the social sciences, and since its adoption in SE, there is little guidance on how to 

employ the methodology, in addition, it is not clear what characteristics of the GT needs 

adaptation to better fit the nature of SE research.  Some researchers in the software engineering 

field are not familiar with the GT methodology, and can frequently be skeptical of its 

effectiveness.  In addition, as our survey highlights, the number of researchers that have reported 

using GT is small which contributes to barriers of more GT adoption. 

6.1.2 Discussion of Sources 

Surveying the application of grounded theory in software engineering turned out to be more 

challenging than anticipated. Grounded theory work is published in a large variety of journals 

and conference proceedings.  A significant portion of grounded theory research can be located in 

journals dealing with empirical studies.  Nevertheless, a growing number of grounded theory 

projects deal with development processes, requirements engineering, tooling, and development 

practices.  Such work is typically published in journals not related to empirical studies. What 
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follows is a review of the methodology used to identify candidate GT sources to ensure that we 

covered the full gamete of papers on the subject. 

We located more than 60 published papers that explicitly reported the use of grounded theory in 

the analysis of their data in an area related to software engineering.  While the determination of 

the use of grounded theory as a research methodology was relatively clear, the scope that defines 

what software engineering is, is more challenging.  Hence, we found a thematic presentation was 

most appropriate.  The surveyed resources are organized under three main themes; agile 

development, distributed development, and requirements engineering.  These three disciplines 

contain a major portion of the grounded theory work within software engineering.  

Some grounded theory approaches recommend starting with high level codes to drive theory 

building [62].  This is particularly challenging due to the small amount of literature available on 

the application of GT in software engineering.  In order to help SE researchers, we collected all 

codes and categories that were reported in each GT application theme. We then analyzed those 

codes in a GT approach to create what we call meta-codes, or codes of codes.  We first collected 

all codes and sub codes from the grounded theory papers in each theme separately.  Those codes 

were then analyzed, rearranged, and merged to create a final shallow hierarchy of meta-codes. 

Each meta-code is associated with tags that summarize a larger number of codes and sub codes 

as exhibited in the literature within a specific theme. It is our conjecture that the meta-codes can 

be of value to future applications of GT in the software engineering themes presented in this 

chapter; they can function as high level codes that drive theory building in these areas. 

6.1.3 Grounded Theory in Agile Development Methodologies 

We were able to identify 32 published papers that applied grounded theory to study software 

development methodologies. Of these, nine reported studying agile methodologies. 

Agile software development refers to a group of methodologies that share and promote principles 

such as development with short iterations, teamwork, collaboration, and process adaptability 

throughout the life-cycle of the project [63].  The roots of agile development can be traced back 

to 1974 when an adaptive software development process was introduced by Edmonds [64].  

However, the definition of modern agile development processes evolved in the 1990s.  For 

example, eXtreme Programming was formally introduced in 1996 [65]. 

Out of all surveyed papers, nine reported research into agile methodologies using grounded 

theory.  This number reflects the fact that agile development processes are a relatively new and 

evolving concept.  In addition, applications of grounded theory work in software development 

methodology in general are limited [61].  The earliest work that reported a grounded theory 

methodology in an agile development process setting is that of Kähkönen and Abrahamsson [66]. 
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Some of the most prominent work is that of Coleman et al. [65, 67, 68], who report on how 

software process and software process improvement (SPI) is applied in the practice of software 

development.  Their study focused on a number of indigenous Irish software companies at 

various stages of development.  In the first phase of the study, they performed four interviews in 

three different companies; each interview contained 53 questions.  In the second phase, they 

investigated 11 more companies, performing interviews of about an hour each.  They initially 

performed focused and axial coding, which resulted in three themes and 17 core categories.  The 

theory they present represents a form of óexperienceô road map illustrating some of the potential 

pitfalls a software product company could face and how others have avoided or resolved them.  

Their findings also included supporting evidence and justifications regarding the low level of 

adoption of CMM/CMMI and ISO 9000 by Irish software companies.  They cited cost of 

implementation and maintenance, the added burden on the development efforts, and increased 

documentation and bureaucracy as the main factors behind the low adoption of the SPI 

initiatives.  For example, they report that smaller companies believed SPI would negatively 

impact their creativity and flexibility. 

Another example of use of the grounded theory approach in an agile environment involved 

exploring the socio-psychological characteristics of agile teams and to learn about the type of 

experiences acquired in such software development teams [69, 70].  The findings contribute a 

better understanding of the link between agile practices and positive team outcomes such as 

motivation and cohesion. 

Meta-codes for Agile development methodologies  

We collected codes and sub codes from the 9 studies that adopted GT to investigate agile 

development methodology.  We constructed the meta-codes by analyzing 50 codes, and 206 sub 

codes.  Meta-codes and tags are summarized in Table 12. 

Table 12:  Meta codes for agile development methodologies 

No. Agile development Meta -
codes  

Tags / Description  

1 Characteristics/Practices of 
agile development 

communications, processes, negotiations, skills, team, commitment, 
management, implementation, knowledge sharing  trust, software builds, 
team rooms, workspaces, meetings. 

2 Challenges of agile 
development 

Requirements, communications, people oriented process, formality, team 
cohesion 

3 Company characteristics Domain, number of projects, market sector. 

4 Project Characteristics Duration, complexity, development sites, customer locations, team size. 

6 Lessons Tools, expertise, culture, trust, training, commitment, resource management. 

 

Table 12 presents a summary of the meta-codes we constructed in the agile methodology theme.  

Each meta-code represents a large number of codes and sub-codes, samples of which are 

presented in Table 12.  Here we provide a description for each of the meta-codes.     
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Characteristics/Practices of agile development.  This meta-code is used to group codes and 

sub codes that refer to a characteristic specific to an agile software development project.  This 

includes the nature of communication within teams, knowledge sharing, and the characteristics 

of trust within a development team, management, and the client.  It also includes team rooms, 

and the nature of the workspaces and meetings. 

Challenges of agile development.  This code groups challenges in agile development related to 

requirement gathering activities, requirement stability, nature and frequency of changes in 

requirements, communications, about the people-oriented rather than process-oriented control, 

lack of formality, and lack of team cohesion. 

Company characteristics.  Company-related codes were reported in two studies.  This meta-

code groups tags related to the company domain, the number of agile projects in execution and in 

total, as well as the targeted market sector. 

Project characteristics.  This meta-code groups all codes related to the agile project 

characteristics.  This includes duration of the projects on average and individually, complexity of 

the project as perceived, and objectively, the number of development sites and development team 

size. 

Lessons.  This meta-code collects all lessons learned that are related to agile development.  

Lessons learned were related to the tools being utilized, the importance of expertise within the 

team, the culture role in the success of projects, and the role of trust.  In addition, it includes the 

importance of formal training, and the commitment of every team member to the success of the 

agile activities, and the importance of proactive resource management. 

6.1.4 Grounded Theory and Geographically Distributed Development (GDD) 

Out of our surveyed literature, we identified seven studies on Geographically Distributed 

Development (GDD) using GT. GDD, also known as Distributed Software Development (DSD), 

has grown to be a common practice in todayôs industry [71].  Despite the limited number of 

publications, GDD seems to be a fertile discipline for grounded theory application for the 

following reasons: 

- GDD has grown, and is still growing, exponentially in the last decade [72]. 

- GDD brings about additional complexity to any development process. 

- There is a wealth of data sources that can be analyzed using grounded theory analysis.  

For example, communications in GDD are typically written communications (Email, chat 

sessions) that can be easily recorded over an extended period of time with little effort and 

little disruptions to existing business activities.  Such data are typically absent in normal 

settings, or require significant effort to facilitate data collection. 



131 
 

There are situations when a surveyed GT work addressed both GDD and agile methodology at 

the same time, as we show in this section.  In such situations, we actually classified the paper 

under both themes, including their codes and sub-codes in the analysis and construction of meta-

codes in both themes. 

GDD becomes extensively complex and challenging when an agile method is adopted [73]. 

Agile processes depend heavily on information, short informal meetings, and face-to-face 

communications.  Ramesh [72] has reported a grounded theory approach that analyses data from 

three different organizations, attempting to answer the question whether distributed software 

development can be agile.  Ramesh has identified a number of challenges specific to distributed 

agile development processes, nevertheless, he concluded that distributed and agile can be 

combined. 

Layman [71] pursued a different approach.  Layman studied a successful distributed agile 

development project in the U.S and Czech Republic in an attempt to uncover the characteristics 

of these successful projects.  They collected the data from archives of emails, as well as semi-

structured interviews.  Quantitative data (number of source file lines for example) was 

supplementary to their qualitative data.  Their workôs main contribution is the recommendation 

of four success factors for a distributed XP methodology; the facilitation of communication by 

the management, short asynchronous communication loops, identifiable customer authority to 

resolve requirement related issues, and a high process visibility. 

It is typical for grounded theory research activities to take place in real life situations, by 

interviewing or collecting data from real projects.  However, one study [74] reported grounded 

theory methodology using student subjects comprising 21 virtual teams collaborating in the 

completion of a given task.  In this study, the researcher aimed at uncovering how distributed 

projects are managed and executed.  The study concludes with characteristics of managing a 

distributed project, as well as proposing a model for distributed project management.  A similar 

work [75] also utilized students in a study of distributed development using student participants.  

The study relied on the analysis of electronic communications collected during the performance 

of a distributed development task by the students. 

Managing requirements in a distributed development setting presents unique challenges.  

Requirements engineering is a communication-intensive and dynamic task.  When stakeholders 

are geographically distributed, requirement engineering tasks become even more complex.  

Damian and Zowghi [76] present their field study work that investigates requirements 

engineering challenges introduced by stakeholdersô geographical distribution in a multi-site 

organization.  Their goal is to examine requirements engineering practice in global software 

development and formulate recommendations for improvements. In the next section, we discuss 

grounded theory-based requirements engineering research in non-distributed projects. 
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Meta-codes for geographically distributed development 

Out of the seven identified GT studies on GDD, we analyzed the codes extracted from six 

studies.  One study did not provide adequate reporting on their codes and subcodes.  We 

collected 31 codes, and 95 sub codes resulting in eleven meta-codes presented below in Table 

13. 

Table 13: Meta-codes for geographically distributed development 

No. GDD Meta-codes Tags / Description 

1 Communication communication patterns (generating ideas, confirmation, 

consensus, conflict, humor, attitude), positive and negative,  

2 Coordination Time zone (delay in responses) collaboration, Involvement 

3 Adaptation social, work, technological, conflict resolution, lateral thinking 

4 Company background company size, maturity levels, existing development 

approaches, companyôs culture. 

5 Stakeholders project under studyôs stakeholders related information, years of 

experience, etc..  

6 Collaboration 

technologies 

simple emails, advanced collaboration technologies 

7 Requirements 

challenges due to 

distance 

inadequate communication, knowledge management, cultural 

diversity, time difference 

8 Requirements activities elicitation, prioritization, negotiation, validation, examining 

current system, managing uncertainty specification 

9 Involvement of users achieving appropriate participation of system  

users and field personnel,  

10 Trust checking project status, concern about a member doing his 

task, trust built progressively,  

11 Delay Sources and nature of delay, perceived causes, delay mitigation 

actions 
 

Table 13 presents a summary of the meta-codes we constructed in the geographically distributed 

development theme.  Each meta-code represents a large number of codes and sub-codes, samples 

of which are presented in the table above.  Here we provide an analysis and description for each 

of the meta-codes.     

GDD projects are after all software development projects, so it was expected to see a number of 

codes that can be found in a typical software engineering project.  Communications in a GDD 

project plays a more prominent role, and it was found in almost every set of codes analyzed.  

Coordination and adaptation meta-codes are closely associated with the GDD nature of the 

project.  That code represented codes related to time zone issues, collaboration, level of 

involvement, and social and cultural issues.  All these aspects are related to the geographical 






















































































































































