A Manifestation of ModelCode Duality:

Facilitating the Representation $fate Machines the

Umple ModelOriented Programming Language

by
Omar Badreddin

PhD Thesis

Presented to the Faculty of Graduate and Postdoctoral Studies in partial
fulfillment of the requirements for the degree

Doctor of Philosophy (Computer Sciefize

OttawaCarleton Institute for Computer Science
School of Information Technology and Engineering
University of Ottawa
Ottawa, Ontario, KIN 6N5
Canada

© Omar Badralin, Ottawa, Canad2012

! The Ph.D. program in Computer Science is a joint program with Carleton University, administered by the Ottawa
Carleton Institute for Computer Science.

Acknowledgements

| wish to thank foremost my supervisor Dr. Timothy C. Lethbridge. Tim has been my supervisor
throughout the PhD yesand has provided guidance and deep insights that helped shape my
understanding of the software engineering field.

A very special, and welldeserved, thank you to the following:

a) The Complexity Reduction in Software Engineering (CRUIBSgarctgroup | have
benefited from ar weekly meetingand discussionsParticularthanksto Andrew Forward
Garzon Miguel, and Hamoudj®an. My family and fiends. Thank you to my mom, Sameha,
for her unconditional support, my father, Bahy, for his reviews and input.

b) TheNatural Sciences and Engineering Research Council of Canada (NSERC), IBM, and
University of Ottawa for theicollaboration and funding. These institutions have made available
an environment through whidlwas able to conduct research while staying in touch with the
industry.

C) Software pofessionals around the worl8incere thanks to the individuals that
paticipated in my research, published valuable references for my vgriisgvell as to those in
the various newgroups about softare engineering that | follow.our knowledge and insight
helped provide the necessary substance for my work.

Abstract

This thesigresents research boild and evaluate embeddingatextual form of state machines
into high-level programming languages. The work entadiddingstate machingyntax and code
generation tahe Umplemodetoriented programming technologyheadded concepts include
states, transitions, actions, and composite states as found in the Unified Modeling Language
(UML). This approach allows software developers to take advantage of the modeling
abstractions in their textual environments, without $aarg the value added of visual

modeling.

Our efforts in developingtate machines idmple followed a testiriven approach to ensure

high quality and usability of the technologWe have also developed a syntirected editor

for Umple, similar to thee available to other higlevel programming languages. We conducted
a grounded theory study of Umple users and used the findings iteratively to guide our
experimental development. Finally, we conducted a controlled experiment to evaluate the
effectivenes of our approach.

By enhancing the code to be almost as expressive as the model, we furtherrsogpécbde

duality; the notion that both model and code are two faces for the same coin. Systems can be and
should be equaltyvell specified textually ashdiagrammatically. Such duality will benefit both
modelers and coders alik€@ur worksuggestshatcodeenhanced with state machine modeling
abstractions is semantically equivalent to visual state machine models.

The flow of the thesiss as follows; he research hypothesis and questions are presented in

AChapt er 1:. THebackgrouwhdiicexploceddChapt er 2 . iClEapt@3k gr ound
Syntax andsemantics osimple satemachines andiiChapter4: Syntax and emantics of

composite statenachines investigatesimple and composite statgachinesn Umple

respectivelyiChapter 5Implementation of composite state machinespr esent s t he ap
adoptfor the implementation of composite state machines that avoids explosion affribient of

generated codel-rom tis point on, the thesis presents empirical wérkirounded theory study

is presented iRChapter6: A Grounded heorystudy of Umple, f ol | owed by a con
experiment iMChapter7: Experimentatiod. These two chapters constitute our validation and

evaluation of Umple researciRelated and future work is presentedi@hapter8: Related

worko.

How to read this thesis

For readers who are not familiar with UML modeling, specifically, state machine models, we
recommend a statb-end reading of this document. However, readsmsliar with UML
modelingcan cloose to skigChapterl andChapter 2Readers interested in empiriciudies can
focus onChapter 6 and Chapter Readers familiar with Umple and interested in the
development and aritbcture work can rea@hapter 3Chapter 4, and Chapter 5

Table of Contents

ACKNOWIBAGEIMENLS. ...t e ettt e e e e e e e eeeeeenes 2
ADSEITACT. ... a e e e e e eenaa 3
Chapter 1: INtrOAUCTION.uui e 18
1.1 ReSearCh QUESTIONS.cccuuiiiiiii ettt e e e e et e e e e e e e eennas 19
Lol RO Lottt ettt ettt en e, 19
L.12 RO 2ottt ettt ettt ee ettt ettt ee et 20
1.2 Hypothesis and APProach...........cooo oo 21
1.3 RESEAICH ACHVITIES.....cciiiii e e eees 21
1.4 TheSIS CONIDULIONS.ciiitiii et 22
1.4.1 Publications based on this thesiS............ccooiiiiiii e 23
1.5 OULINE. et 24
Chapter 2: BaCKgrOUND...........uuiiiie e 26
2.1 History of State MachinesS.............oiiiiiiii i 26
2.1.1 The Evolution of State MachiNes..............cooeiiiiiiiieeiiii e 27
2.2 Umple state machine example...........ccoooiiiiiieii e 28
2.3 Code Generation from State Machines.............ccoooeeeiiiiiiiiiiii s 31
2.3.1 Design APPrOaChES........cociiiiii e 33
2.3.2 IN-ClaSS PALEINL.......ceeiie e e aenna 34
2.3.3 MUltiple-Class Pattern...........uoiiiiii e 35
2.3.4 Extended multipleclass pattern..........co.uveviiiiiii i 36
2.3.5 Alternatives within design patterns...........coviiiii i e 37

2.4 SUIMIMAIY ettt ettt et e et e e et e e et e e e et e e et e e et e e ea e aea e e ebaaaeeenaeeanaees a7

Chapter 3: Syntax and semantics of simple state machines....................c..........49
3.1 State Machines in Umple: The BaSICS..........ccuiiiieiiiiiiemiinieeeeeeiicieeeeeeeiiinnnnn . 49
3.2 Grammar defining the syntax of Umple state machines.............ccccooeevveeereernnnn. 53
3.2.1 Overview Of the NOTALION...........uiiiiiiiiii e 54
3.3 Umple state machine metaodel.............ouuiiiiiiiiiiie e 57
3.4 State Machine DesSign DECISIONS.oieiiiiiiiiiie et ee e 60
3.4.1 Umple state maching goalS..........ccuuuiiiiiiiiiiei e 60
3.4.2 DESIGN UBCISIONS. .. .uiiiiiiiiiiie ettt ettt e e e e e ee s 62
3.5 State machine reuse and MIXINS..........ouuriuemmiirineeiiie e 65
3.6 State MAChINE tIMEIS........cooi i 67
3.7 Umple textual editor and automated update.site.............cceuviiivieeniieeiiiiieeeeennn, 69
3.7.1 Umple textual @dItOr...........i i 70
3.7.2 Automated update SILe..........cceeviiiieeiiiiieee e e e enn e eenn l
G T8 S T Y11 0] 0T VPP 424
Chapter 4: Syntax and semantics of composite state machines.......................... 73
4.1 Syntax of Composite state machines..............ccocoeiiiieeiii i 73
4.2 Semantics of composite states MaChINeS...........cocovvviiiiieiiii e, 74
4.3 FINAI SEALES ...euiieiii e e 177
4.3.1 Case 1: Final stateS iN regIQNS.........cvvuuiiiiieei et e e s 78
4.3.2 Case 2: Transition from a composite state to a simple Final. state................ 79
4.3.3 Case 3: Final state in nested configuration..............cccoooiieeeiiieeii e, 79

6

4.4 DO A VIS ..o e e e 80

4.4.1 Case 1: Do activity in nested configuration................cevreeiieeeeiiinnneeeeeiiinnnnn. 80
4.4.2 Case 2: Do activities in concurrent configuration...............ccoveeeveeeeeiiinnnneeen. 80
4.4.3 Case 3: Do activities in Multiple state machines within gmaeclass............... 81
4.5 OULSTANAING ISSUEScieiiiiii e ieeiiti ettt e e e e e e e e e e e e bt e e aeees 82

4.5.1 A higher level transition to composite states with regions without start .state82

4.5.2 Conflicting tranSIIONSuuuieiiiiiii e e 83
4.5.3 Forks and Joins with actions and guards.............ccooeiiiiiieniinieeeeeii e 83
4.5.4 Partial FOrkS and JOINS..........uuiiiiiiiiiiiieee et eaeand 384
4.5.5 Event processing in CONCUITENt SLAES..........uvieiiiiieiiieie e e e e e eeennd 84
4.6 Large Stte Maching EXample.......coouuioiiiii e e e 85
4.7 Test Driven DeVeIOPMENL......couuiiiiiii e e e e e e eead 38
4.7.1 Umple TeStING PrOCESS.....ccuui it eeee e e e e e e e e e eana s 38
4.7.2 Parsing Umple code iNtO tOKENS...........oiiiiiiiiiiiee e 88
4.7.3 MetamOdel tESIS.o 89
4.7.4 Code generation tESISiiiiiiii i e 90
4.7.5 GenerategbyStEMS tESIS......uiiiiiii i 92
T S U1 0] T Y PP 93
Chapter 5: Implementation of composite statachines................cccceeeeevieeieeeeennnnnn. 94
5.1 CONVENTION . ..ttt ettt e e e e e et e et e e e e e e e e e ne s 94
5.2 COMPOSILE SALE CASES. iiiuieiiiieiieeeiieee e e e et e e e e e e e e e et e e aaaee Q5

5.2.1 Case 1: Transition t0 an INNEI SLaLecuvnieee i 95

5.2.2 Case 2: Transition froran iNNEr State............coeuviiiiiiiiiiieeii e 97
5.2.3 Case 3: Transition to @ CONCUITENt STAte..........couvuiiieiiiiiiiiiiie e 99
5.2.4 Case 4: Transition from a conCurrent SLtate............ccoevevevviieeereenneereineeeeennnnns 101
5.2.5 Case 5: Reflexive transition of a camment state............cccovevveieevieeeieeeeennnnn. 103
5.2.6 Case 6: Transition into an inner state in a concurrent region...................... 106
5.2.7 Case 7: Transition from an inner state of a concurrent region.................... 108
5.2.8 Case 8: Concurrent state is the start State............cccceeiiiieieiiiiiiii e, 110
5.3 State transition MethQd..............iiiiiiii e 112
5.3.1 ENtering a COMPOSItE SLALE..........ieiiiiieiiiiiiee e e 113
5.3.2 EXiting @ COMPOSILE StAL........uieiiii e e e 115
5.4 Code generation templates...........uoieiiiiii i e 116
5.5 Multiple state machines in the same Class............cccooeeviiieeeeiiii e, 117
5.5.1 Single event causing multiple transitions............ccoovviiiiieeeiiiecee e 119
5.5.2 Actionin a state machine triggers an event of another state machine........ 120
5.5.3 Action in a state machine updates the state of another state machine....... 120
5.6 Traditional flattening approach.............ccooeeuiiiiieii e 120
5.7 Comparison of code generation approaches..............cc.uevieieeeiiieeeeiiieeeeiineeeens 122
5.7.1 Generated code growth analysSiS..........cccocevuiiiiiieiiiici e, 123
LR S T T 11] 0= VPP 124
Chapter 6: A Grounded theory study of PIB............cooiiiiiiiii e, 125

6.1 Survey of grounded theory in software engineering..........cccuvuerieeereeieeiriinneeeeennne 125

6.1.1 Background and HiSTOLY........couuuuiioiiiiiiieee e 126
6.1.2 DISCUSSION OF SOUICES......cciiiiiiiiieiiiiiii ettt e e eeeennees 127
6.13 Grounded Theory in Agile Development Methodologies...........ccccceevieiieeennns 128
6.1.4 Grounded Theory and Geographically Distributed Development (GDD)........ 130
6.1.5 Grounded Theory and Requirement ENgineering.............cccuuvvveenneeeeeeennnnnn. 133
6.1.6 Other Applications of Grounded Theory........cccvveviiiiiiiiiieeec e 134

6.1.7 Opportunities and Challenges of GD Application in Software Engineering....135

6.1.8 Adaptation of Grounded TREOLY..........coiiiiiiiiii e 136
6.1.9 ANalySiS Of MEEBOUES..........uiiiiii e e e 137
6.2 Grounded Theory study of Umple...........oiiiiiiiiiiieer e 138
8. 2. L PUI PO S ettt e 138
I ©] o] =T ox (YT 138
L2 T \Y =11 T To (0] (o o Y /P 139
B.2.4 PartiCIPANIS....ccceeiiieeii et 139
6.25 Partici p.ant.s.d..t.as.kKsS. i, 139
B.2.6 QUESTIONNAIIE. .. .cieti et eeeie e et et et e e e e e e ae e e et e e et e e eaa e st e eaneennnnns 139
B.2.7 INLEIVIEW ...ttt ettt e ettt e aa e e e e e e e eeas 140
6.3 RESUItS and ANAlYSIS:.......ccouuiiieeiiii e 141
6.3.1 QUESLIONNAIIE FESULLS.t e e e e 141
6.3.2 Interview qualitative analySiS..........cocouiiiiiiiiiiieii e 143

6.3.3 COAING PrOCESS ... ciiieiiiie ettt e e e ettt e ettt e e e e e e e e st e e e e e eeta e e eeeeeees 144

6.3.4 COUES SUMIMAIY....cieeuiieiiiieeeitiia e e ettt e e e et e e e et e e e et e e aeeaan e eeetnaeeetnnaeeennnnn 144
6.4 FINAINGS. .. i n e 147
6.5 ChalleNgEs.......ooeeiiiieei e 149
6.6 SUIMIMIAIY ... eeit ettt ettt et e e et e e et e e e e e e e e e e ee e eana e 150

Chapter 7: EXPeriMentatiOn............uuiieiieiiiieaie ettt ee e e e e e e e e e eenes 151
7.1 Experiment definition, context, and StePS.........coovvviiiiriiiiieeeeie e 151
7.2 EXPEriMent MEIIICS. . ..coouiiiii et 152
7.3 NUIlTHYPOtNESES (HO)ttt e eeeeeaes 152
7.4 EXPeriment PIaNNiNG...........oiiiiiiiiiiiee et e e r e e et a e 153
7.5 EXPeriment ODJECES.....cocuu i 154
7.6 QUESHION LiSt. . iiiiii i e e e e e e e e e e e e eean e 156
7.7 Profiling iNnfOrmation...........ccouuiiiiiii e 157
7.8 Selection of PartiCIPantS............oieieiiiie e e e 158
7.9 Variables inthe BIdY...........coovuiiiii e 158

7.9.1 EXraneous Variables.............uiiiiiiieeeee e 158

7.9.2 Independent Variables...........cccoouuiiiiiiiiee e 159

7.9.3 Dependent Variables..........ccoouiiiiii e 160
7.10 Threats Of Validity...........ooiiiiiiiii e 160
T L1 RESUNS. ... et 162
7.12 RESUIS ANAIYSIS.....iiiiieiii e e s 163

10

7.12.1 Assessment of threats of Validity..............uuuoiiiiiiiiimiiiii e 163

7.12.2 Examining Data for Umple and Java.............cceiiiiiiieeiiiiiiiieeeeeie e 163
7.12.3 Examining data for Umple and UML..............oooiiiiiiiiinnncceei e, 164
7.13 DISCUSSION. ...ttt ettt ettt e et ettt e e e e e et bb e e e e e e rnnnta e e e e e 166
7.14 Related WOTK.........eeie e 166
715 FULUME WOTK ...ttt e e e et e e e e e e e ennnes 167
7168 SUMIMAIY. ...eeiiieeeee ettt ettt et e e et e e e e e e e e r e e e e e e e e eena e e eenenn 167
Chapter 8: Related WOIK............ooiiiiiiiiiee e 168
8.1 Textual MOAENING......c.uuiii i 168
8.1.1 State machines iN RUDY............cooiiiii i 170
8.1.2 State Machine CoOmMPIIEL............uniiiiiii e e 171
8.1.3 Comparison with Umple approach............ccouiiiiiiiiiiiiii e 173
8.1.4 Specification and Description Language (SDL).........cccovvviiiiiiiiceeeeveie e, 174
8.1.5 ComparngUmpleand SDL.......c.ccouuiiiiiiiiiecier e e 175
8.2 Standardiation of execution semantics of UML..............coooeiiiiiiiieiiiiiiiiiiiiinns 178
8.2.1 Background and INtrodUCtION.oiiiiiiii i e e e 178
8.2.2 Emergence of ACtion LanQUAagES............uuvevviuiiiieeeiiieeciie e e eeeaaas 179
8.2.3 Why not use an existing programming onstraint language?....................... 180
8.2.4 Umple as an ACtion LANQUAGE.ceeveruieeiiiiieeee e ee e e e e e 181
8.2.5 Overcoming limitations with existing programming languages.................... 181
8.2.6 Comparison between Umple an@\lU................cooiiiiiiiien i 182

11

S TG B S U110 011 0 1= T S PP PPPTRUPPTRPIN 184

Chapter 9: Summary and CONCIUSIONoiiiiiiiiiiiiee e 185

(€ (01 T YO P PP PRPPPPPPN 188

Y o] 0= [0 | PSP PR PPUPPPPPPN: 191
A.1 Example SysSter®Ne (UML).......ccooiiiiiiieeeieiie et 191
A.2 Example System One (UmPLE)........coooiiiiiiiie et 192
A.3 Example System ONe (JAVA).ot 193
A.4 Example System TWO (UML).......uiiiiiiiiii et 194
A.5 Example SystemwWo (UmPIE)......cooiiiiuiiiiiiiiiii e 195
A.6 Example SysStem TWO (JAVA). ... ettt e e e eees 196
A.7 Example System Three (UML)ooiiii i ee et e e e eees 197
A.8 Example System Three (UmMPLE)........ooeeeeiiiiiiii e 198
A.9 Example SYEM Three (JAVA). ... ettt e e e e e e aa s 199
A.10 Training Example One (Classes, attributes, Associations)............ccccccevvveueeeeens 200
A.11 Training Example 2 (State Machings)............ccooevvuiiiiieeiiiiccee e e 200
A.12 Question list for example SN ONE.......ccovvniiiiiiii e 201
A.13 Question list for example SYStemM tWO.........ccvviiiiiiiiiieeee e 203
A.14 Question list for example system three..........coooevviiiiicii e, 205

REIEIENCES e 207

12

List of Ta bles

Table 1: Variations of implementation of ACLIONS............oooiiiiiiiiiiiie e 39
Table 2: Tool design apProaChEs...........ouuuiii i e 40
Table 3: Design variations implementation................ii i 40
Table 4: Design approach COMPAriSON............i it 43
Table 5: Generated cedrom commercial to0IS.............uiiiiiiiiiiiiciiieee e A4
Table 6: Number of classes for different design approaches............ccccovvivveerieiiiiiinnnn. 45
Table 7: Comparison between Umple andlU2.2 state machine metaodels.................... 59
Table 8: Umple state maching KEYWOITS.coiiiiiiiiiiioeeee e 60
Table 9: Minimizing the number of KEYWOrdS............ooiiiiiiiiiiiiei e 61
Table 10: code generation COMPAIISON.........uuieiiriieeeieee e e e eeie e e e s e e eat e e eeenraaeeernaaeenes 123
Table 11: Meta codes for agile development methodolagies...........c.cccevvveeeriiieennnnn. 129
Table 12: Metacodes for geographically distributed development..............ccccocevveeenn.... 132
Table 13: Metacodes for requirements eNgIiNEEriNG..........cevuuieeiiiiiieeereiieeeeiieeeeaieeeenns 134
Table 14: INtervieW QUESTIONSciiii et e e e e e e e et e et e e e e e e e e aan s 140
Table 15: Questionnaire reSPONSES SUMMAIY.......u.ceeuuueeeeriiaeeererieererieeerrnaeerennanaaeens 142
Table 16: System eraple instances distribution.............cccoeeeiiiiier e, 153
Table 17: Domain and abstract naming distribution................ccccooeveeiii i, 154
Table 18: Example model Properties..........oieveiiiciiiieeeeeee e 156
Table 19: Line and character numbers for Java and Umple examples.............c........... 156
Table 20: Question list for version E1 (UML and Umple)............cooiviiiiicenciiiieeeeenn, 157
Table 21: Information collected prior to the experiment.............ccooeeiiieeiii i, 158
Table 22: EXtraneous variabIes............ccooouiiiiei e 159
Table 23: Independent variables.............coouiiiiii i 160

Table 24: dependent variabIes.............ooo i 160

Table 25: Threats Of Validity.........c..iiiiiii e 161
Table 26: AVErage reSUILS..........uu et eeeeeees 162
Table 27: Average response time per eXampPle........ccoouiuiiiiiiiiieiiiii e 163
Table 28: Objective of UAL Standard...........coovveuiiiiiieer e eee e e e 183
Table 29: Question list for version E1 (UML and Umple).........coiiiiiiiiiiiiiinieeeeeeiiennn 201
Table 30: @estion list for version EL (JAVA)........ccuuuuriiiiiiiiiei e 202
Table 31: Question list for version E2 (UML and Umple)...........oiiiiiiiiiiieiinieeeeeiinnn 203
Table 32: Question list for Y8ION E2 (JAVA)........cccvuuiiiiieiiiiiiiie e 204
Table 33: Question list for version E3 (UML and Umple)...........ooiiiiiiiiiiiiiinieeeceeiienn 205
Table 34: Question list for version E3 (JAVA)........c.uuuuriiiiiiiiiiieeee et 206

14

List of Figures

Figure 1: History of State MacChiNeS..........cooiiiiiiii e 26
Figure 2: State machine of a car tranSMISSI............uiiieiiiiiiiieeee e 29
Figure 3: Extensions to state Patt@lil.............uuiviiiiiiiiiiiee e 32
Figure 4: An Example State machine.............uoiiiiiiiiiiii e 34
Figure 5: Multipleclass design Pattern.............oooiiiiiiiiieee e 36
Figure 6: Extended multiplelass design approach..............cccoouviiiieiiiiiiiiiiiineeeei e 36
FIQUIE 7 INOIE BVEINL ...ttt ettt et e e e et e e e e e e bnanna e e e e 38
Figure 8: summary of design approaches and variations.................ccccevevvvvinneeneennnnnn. 41
Figure 9: Nested eXamle..........oo i 42
Figure 10: CONCUITENt @XAMPLE iiii e e e e e e e e e e e e e aann s 42
Figure 11: Performance analysis of the three design approaches................coovveiieennnn.. 47
Figure 12: Umple Metanodel..........c.ouiiiiiiiiiiee e e e e e aees 57
Figure 13: Umple highevel system cCOmMpPONENtS............coouviiiiiiiieeeiiii e 69
Figure 14: Umple textual EAILOr..........ccouuiiiii e e e e e e e e e 71
Figure 15: Exploring the semantics of state machines.................ccoooeeeviii i, 75
Figure 16: Fnal StateS iN FEQIONS.uuuiiiiii e ee e e e e e e e e e e eees 18
Figure 17: Transition from a composite state to a Final state...................ccceeiieeiienne, 79
Figure 18: Final state in nested CQIUiAtioN...............c..uuviiiiiiiieeer e 79
Figure 19: Case 1: Do activity in nested configuration...............ccoevieeeriiie i, 80
Figure 20: Case 2: Do activities in concurrent configaradi................cccceeeevieeiieeeinneeeennn. 81
Figure 21: Case 3: Do activities in Multiple state machines within the same.class......... 81
Figure 22: A higher level transition to a composite State............cocoevvvieieiiiieeiieecieeenn, 82
Figure 23: Conflicting tranSItIONSuiiii e e e e e ea e ees 83

file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420931
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420938
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420939

Figure 24: Fork with actions and QUAIDS.iieiiiiiiime e 83

Figure 25: Partial fOrk........ oot 84
Figure 26: Event processing in CONCUIMTENE FEGIONS.cuuuuuuieeeieeeeiiieeeeeeeniiaeeeeeerenne 84
Figure 27: Complex state machine madel............ooouuiiiiiiiiiiii e 85
Figure 28: TeStiNg ProCEEB].......ccoiiiiiiii e 38
FIQUIE 29:1CFCG PrOCESS.....ouuiii ettt ettt ettt e ettt e e e e et e e e e e e sbnae s 94
Figure 30: Transition t0 an iNNEr STALE...........oooiiiiiiiii e 96
Figure 31: Transition from an iNNEr StAte..........ccuuuuiii i 99
Figure 32: Transition t0 @ CONCUITENT SEALE...........uuiieiiiiieee e 101
Figure 33: Transition from a CONCUITENt SLALE.............vuuviiiiiiiee e 103
Figure 34: Reflexive transition of a concurrent State..............oooeeeeeieennieeiiiiiiiiieeees 106
Figure 35: Transition to an inner state in a concurrent regionN...........cccueveeeeeeeeeeeeennnnn. 108
Figure 36: Transition from an inner state of a concurrent region............ccccoeevveeceeeeennnn. 110
Figure 37: Concurrent state is the start State...........c..ooiiviiiei i 111
Figure 38: explosion PhenOMENQN..........ccoiiii i e e e 121
Figure 39: comparison of flattening approaches.............cccooviicii i 122
Figure 40: Composite state comparison eXample...........cooeeviiiieeeeii e, 123
Figure 41: Factor of growth analySiS..........ccouiiiiiiiiiieiii e e 124
1o T LI @ Yo =S 144
Figure 43: Number of unigue visitors to the Umple Google Code site from March 1st to

December 1st, 2011 (this does not include UmpleOnling)............c.ccoovvieeeviiiiieeiineees 150
Figure 44: Example one class diagram..........cccoouiiiiiiiiei e 154
Figure 45: Example One state machine diagram...............cccooevieeiiiieiiiie e 155
Figure 46: Averag response time for Umple and Java...............cccoeeiiieeiii e 164
Figure 47: Average response time for Umple and UML...............cooviiiiiiii e, 165

16

file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420940
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420941
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420942
file:///C:/Repositories/CruiseNew/Omar/Thesis/Thesis_v6.0.doc%23_Toc321420956

Figure 48: Simple state Machine ..o e 169

Figure 49: State machines in RUDY...........coooiiiiiiii e 170
Figure 50: SDL graphical and textual NOtation..............ccoovuiiiieinieeiiei e 175
Figure 51: UML and Umple NOtatIONS..........oeeiieiieieieieeeiiiiiie et eeeee e 176

17

Chapter 1: Introduction

The context for this thesis #&software development environment where code andeimedide
in the same artifact. It is an enviroamtwhere the programming language is enhanced by
modeling abstractions typically available to modelers in a visual environment. This approach
effectively raises the abstraction leveltob d angders higHevel programming languages.

Our work is part ofesearch efforts aiming at unitiegdecentric and modetentric software
engineering with the ultimate goal of enhancing modeling practices softveare engineering
industry.We approach this goal by incorporating modeling abstractions in textuattiatm
extends, or is similar to, a programmitanguageln particular, we investigate the incorporation
of UML state machines to enhance the Umple lang{i@pd his approach is a manifestation of
modetcode duality. Modecode duality means that we consider both model and code to be a
single entity with two representations. More specifically, we aideatonstratinghatgraphical
state machine modeling abstractions #rar equivalent textual representatsocan beequdly
effective for designing and understanding systems

Traditional development environments treaidels ad code as two separate entities. Such
approachemduce software professionals to create, edit, and manage independently two separate
artifacts modds and codeForward and reverse engineering for code and model is therefore
needed to keep the two artifacts in syn€m the other hand, if we treat models and code as a
single entity, having two representations, we encourage the treatment of mod=islard a

single artifactmodetcode duality) The need for modeb-code and codéo-model

transformations are then eliminated or minimized.

A key research hypothesis we investigate is whether the core features of state machine
diagrammatical modelintanguage can be effectively represented textually, in aleig
programminglike syntax.Effective representation means that software professionals can
comprehendgevelop and maintain software models textually in a manner suitable particularly
to those who are accustomedtextual programming languagés.fact, developers and

modelers will blend modeling and coding in the same development artifacts.

Our research approach is threefold; firge investigate ath evaluate how software engineers
generag code from models, focusing on state machieéels and we use a grounded theory
study to understand how Umple early adopters perceive textual modtdiagively, we use the
empirical research findings to drive the second part of this research, iwleigherimenting with
state machine enhancements to tkisteng Umple research platforrAnd finally, we
empirically evaluate our findingsy means of conducting controlled experimentation

18

The goals of our research activities are: 1) Understaritbiagthe current tools handle code
generation for state machine®) Empirical assessment tife use of textual modeling in

software development. 3) Utilizing the findings of goals 1 and 2 to drive activities that aim at
incorporating state machine modelingaitextual modeling environment to generate effective
models and codél) Evaluaing our approach

1.1 Research Questions

Our research activities are guided by the following questions:

111 RQ1:

To what extent do software developers use state machines to nsteled bghavior and
specifications? What are the major factors behind that level of adoption?

The origins of state machines can be traced
introduced by Charles Babbage in 188#1 The mathematical model, since then, has been
continuously improved and refined. We discuss the history and development of state machines
i n t h e Hist@ycof StakeMachineés o n 26 ag e

State machines are now a weditablished modeling approach and are incorporated in the UML
modeling specification. State machine models are supported in a significant number of software
modeling tools and there is considerable support for automatkdgeneration from state

machines diagramslowever,our research findings indicate a low level of adoption ofielimg
notationsin the software industrjb] andspecifically for state maching¢6]. Our personal

observation of modelers, and our survegapabilities of modeling tools, discussed later,

indicate that adoption of state machines is particularly low. Reasons for the low adoption of
state machines models may include:

1. State machine support by software modeling tools is poor.

Other than in cedin highend reaitime modeling tools, the available software modeling
tools tend to have little support for state machine analysis and codetgemenad some do
not support basic modeling of state machimesuch a situation, lack of proper suppaort i
the available commercial and open source modeling tools will inevitably have a negative
impact on the adoption of state machines.

2. Typical state machine diagrams are represented using a mixture of diagrammatical modeling
elements and textual elements.

Elements like states and transitions render themselves suitable for diagrammatical
representations, while elements like actions and guard conditions are medd@uiextual

19

representationin most software modeling tools, developers have to switch fisoal
context to textual context to accomplish their modeling tasks.

3. There is little correspondence between state machine diagrams and the generated code.

There are multiple design patterns for code generated from state machines. Our survey of
generated@de from a number of leading open source and commercial software modeling

tools, discussed later, indicates the existence of several distinct design patterns

variations in the generated code that ggolel implementation specific¥his creates a

wider gap between models and code that further induces developers to treat code and models

as separate artifacts that need t CGhafie¢2:i ndepe
Background .

4. Integration of state machine notatiwith other object oriented concepts tetalbe poor

State machine notation is poorly integrated with ote&ted UML modeling concept$he
overwhelming majority of tools support state machine notation in a standalone fashion;
where the state macl@rdiagrams do not integrate smoothly with other modeling notations
such as class diagrams. For example, they do not generally support refinement of state
machines over inheritance.

5. Awarenes®f state machines as a modeling notation is low among soft\veaedogpers.

Software professionals may choose not to use state machines because they are not familiar
with their concepts or applicatioriBhereis relatively little guidance on building applications
that incorporates state machines.

112 RQ2:

Can the gap betweestate machine diagrams and code be minimized by incorporating core
state machine abstractions in a hitgvel programmingike language?

Software modeling tools treat state models and cotie@mseparate artifactilpdates in the

visual model have to k&ynchronized to the corresponding code, and vice versa. Software
developers therefore need to make updates in both the visual model and the textual code, further
complicating development taskA common scenario is for developers, at some point during the
development process, to stop updating the visual model and rely only on editing the generated
textual code, which renders models out of date and obsolete.

By incorporating state machine core concepts in a textual language that supfoetaiative
code the model is maintained as long as the code is maintained.

20

1.2 Hypothesis and Approach

The following is the hypothesis we are investigating in this thesis:

H 1: Software developers cmomprehendoftware more effectivelystate machine
abstractions arembedded within the code

Existing software moeling and code generating toaisply that both the visual and textual

contexts are in use, and are required, for system developsiagtstate machine diagran@ur
investigations focus on incorporating stabtachine concepts in a textual modeling language, and
allow for in-line native code embedding/e anticipate significant reduction in the gap between
state models and code, enabling developers to effectively treat both visual and textual code as a
singleentity. Our evaluation indicates thdbor simple taskghis approach improves

comprehension when compared to a typical high level programming langllagevaluation is
discussed ilfChapter7: Experimentatioron pagel51

This hypothess is investigated throughout our research activities.

1.3 Research Activities

We have conducteithe following research activitiend used the findings to address
research questions and verify our hypothesis.

I. Continuously explore how the Umple research platf is perceived by end useRsior
to our researciymplealready supported core class diagram features including
associations and attributegnderstanding how users perceive textual modeling of class
diagramelements hekpd guide our research activities and the implementation of state
machine features in a way that is best s
cognitive patternsWe carry out this task by conductinggeunded theory study of
Umple.Details of the studyanfl i ndi ngs arGhapeb: A Greunde@dhdoryi n i
study of Umple& .

II. Explore the design and implementation of state machineegts in the Umple platform.
Our understanding of the prevailing modelirrggtices and modeling todigshelped
guide our research activities in adding state machine featutésple. To accomplish
this task, we exploreéxisting related technologies and research.

llI. Implement an interpretation of the latest UML state machineifigaionsand
incorporate that implementation in the Umple platform. The implementation covers both
simple and composite state machines.

IV. Evaluate our approaalsing a controlled experimerRarticipants are presented with
samples of models and code usigisual UML notation, a typical high level

21

u

14

programming language, and Umple. Participants are then asked a series of questions that
aims at measuring their level of comprehension. The study suggests a positive added
value of Umple technology.

To accomplib the empirical study, it is required to present participants with a compiler
and environment that reflects Umpleds vVvisi
expectations and helps participants focus on core research questions, rather than

limitationsin the platform. Towards that objective, we bailsophisticated textual editor.

Thesis contributions

The contributions of this research and the publicatii@sed on this thesis are presented
in this section. The contributions are listed in order of ing@e. References to thesis
sections discussing the contribution are given.

Adding gate machine abstractions in the Umple language

The Umple technology now supports state machine abstraclibase abstractions are
supported in the core Umple, and henare reflected in all Umple based tooling, such as
the Umple onlind3]. Implementing such abstractions reqdire

- Defining new textual syntax to represent UML state machine modeling elements.
- Integrating and extending the syntax into the Umple technology
Implementing semantics for state machine abstractions

The semantics of the state machine abstractions are part of Umple core technology. The
state machine abstractions are implemented by means of code generation of high level
programming language. Umpdistinguishes between two types of state machines;

simple state maching€hapter 3, and composite state machir{@hapter 4 Chapter

5). This contribution entails the following stdmntributions:

- Code generation for state machines that is similar td edfaware developers would
write as implementation for a state machine m@¢@ékapter 3 Chapter 4.

- A novelapproach to implementing composite state macbémeantic§Chapter 5.
Investigation and analysis of the latest UML state machine specifications

We introduce a deep investigation of the UML state machine specifications exposing
some of the undefined semantics of state machines. We also analyze areas of the
specifications where there are two or more alté&reatnt er pr et at i ons. U mj

22

implemenation provides clarifications and a working solution to some of these
ambiguities. (Chapter 4)

1 Empirical evaluation of the Umple technolo@@hapter 7.

A controlled experiment has been designed and conducted to evaluate the effectiveness of
the Umple techology. This experiment is the topic Ghapter 7: Experimentation

1 Opensourcing the Umple technology

Umple is now open for developers and contributors. Umple source is hosted in the
Googlecode repository7].

1 Reporting on a@application of Grounded They research methodology. We used a
grounded theory study to learn about the community of Umple users and utilize their
feedback to enhance our research direction and priorities. (Chapter 6)

1.4.1 Publications based on this thesis

All publications based on thisesisarepresented in this section. The first author is the
main author.

1. ACombining Experiments and Grounded Theot
Lessons from the Umple Mod€lr i ent ed Programming Techno!

Omar Badreddin, Timothy C. Lethbridge. @ppear in ICSE Workshop on User
Evaluation for Software Engineering Researchers (USER), 2012.

2. iModeali ven Rapid Prototyping with Umpl ebo

Andrew Forward, Omar Badreddin, Timothy C. Lethbridge. In Software: Practice and
Experience Journal, 2011.

3. "A studyof applying a research prototype tool in industrial practice”

Omar Badreddin and Timothy C. Lethbridge. 2010. In Proceedings of the eighteenth
ACM SIGSOFTInternationaSymposium on Foundations of Software Engineering
(FSE '10 Doctoral Symposium). ACM, Ne York, NY, USA, 353356.
http://dx.doi.org/10.1145/1882291.1882345

4. "Umple: A modeloriented programming language"

Omar Badreddin. In Proceedings of the 32nd ACM/IEEE International Conference on
Software EngineeringDoctoral Consortium Volume 2, 2010pp. 337-338.
http://dx.doi.org/10.1145/1810295.1810381

23

5. "Teaching UML Using Umple: Applying ModéDriented Programming in the
Classroom"

Timothy C. Lethbridge, Gunter Mussbacher, Andrew Forward, Omar Badréddin
Proceedings of CSEE&T 2011,-tmcated wih ICSE 2011, pp. 421428.

6. "Umplification: Refactoring to Incrementally Add Abstraction to a Program”

Timothy C. Lethbridge, Andrew Forward, Omar Badreddin. In proceedings of the 17th
Working Conference on Reverse Engineering http://dx.doi.org/10.110RBM010.32
201Q pp. 220224

7. "Umple: Towards Combining Model Driven with Prototype Driven System
Development”

Andrew Forward, Omar Badreddin and Timothy C. Lethbridge. In proceedings of the
21st IEEE International Symposium on Rapid System Prototyping
http://dx.doi.org/10.1109/WCRE.2010.32010.

8. MChallenges and opportunities in applying research prototypes and findings into
industrial practice

Omar Badreddin, Tim Lethbridge, Hisham&hishiny, MargareAnne Storey, Andrew
Forward. CASCON '10 Proceedmgf the 2010 Conference of the Center for Advanced
Studies on Collaborative Research. ACM. doi:10.1145/1923947.1924021.

9 "nPerceptions of Software Modeling: A Sur

Andrew ForwardOmar BadreddinandTimothy C. Lethbridge(2010) 5th Workshop
From code centric to model centric: Evaluating the effectiveness of MDD
(C2M:EEMDD), Paris, June 2018ttp://www.esi.es/modelplex/c2m/papers.php

In addition, we haveublishedthe fdlowing technical report. A conference paper has been
submitted and is being considered for publication.

100AAn Empirical Experiment of Comprehensi ol
Approacheso.

Omar Badreddin and Timothy C. Lethbridge. Technical report nuifiRe2011-03.
Accessed 201 http://www.eecs.uottawa.ca/eng/school/publications/techrep/2011/

15 Outline

Presented here is a short summary of each chapter.

24

http://www.esi.es/modelplex/c2m/papers.php
http://www.eecs.uottawa.ca/eng/school/publications/techrep/2011/

Chapter 2: Background

This chapter presents background research, a brief introduction of Umple state machines, and a
survey of state machine code generation approaches.

Covered in this chapter are existing technologies in state modeling and code generation
approaches from stateachines.

Chapter 3: Syntax andsemantics ofsimple gate machines

Our approach of representing state machines abstractions in Umple is presented in this chapter.
The chapter also covetise design decisions and cpramises that we undertook throughout the
research study.

Chapter 4. Syntax and €mantics ofcomposite statemachines

Nested and concurrent states concepts syntax and semantics are explored in this chapter. The
chapter also explores aspects of the latest UML standard and how it relates to our approach.

Chapter 5: Implementation of composite state machines

A novel implementation of composite state machine semasfmesented in great detail in this
chapter.

Chapter 6: Grounded theory study of Umple

We conducted series of interviews with users of the existing Unighguage, compiler and
environment We analyzedhe interviews gingthe grounded theory approach and used the
results as guidance to our researcth experimental development.

Chapter 7: Experimentation

Experiment goals and objectives, metrics, design, results and analysis are presented in this
chapter.

Chapter 8: Related Work

We present in this chapter selectedgming research activities that besamilarity to our
research. We focus on highlighting aspects of the existing research that ifloandirection,
and position our research with respect to existing work.

Chapter 9: Summary andconclusion

This summarizes our research aciégtand gies an outline of future research directions

25

Chapter 2: Background

This chapter presents background research, a brief introduction of Umple state machines, and a
survey of state machine code generation approaches.

2.1 History of State Machines

The mathematal foundations of state machines can be traced back to the Turing machines that
were first described by Alan Turing in 19B8%. A Turing machine is composed of a tape, head,

a table, and a state registryhe mathenatical foundation of Uiring state machines has been
formalized in the Church Turing thesis that informally states that if an algorithm (a procedure
that terminates) exists then there is an equivalent Turing machine.

The history of state machines is gragatliy summarized in thBmelinein Figurel.

1936 1987
Alan Turing 1952 Harel Statemate 1994 - 2006 - 2012
d Church's Thesis \ UL v0.9
// I"-., - UML 2.0 Alf, UAL, Umple

- e \ . . I—I

T

- T e,

— - - - l..'
1996 1e76 1993 [omaz /2
Mealy and Moore state machines SpL Booch 1997 2010

UML 1.1 UML 2.4 Beta

Figure 1: History of state machines

A Turing machine is a type of a state maehi At any point of time, theufFing machine is at
one of a finite number dftates. In modern terms, reading a character on the tape may, or may
not, trigger d@ransitionto anew, or the same, state. Anyrihg machine can be effectively

model ed using modern state machine diagr ams.

math e mat i c al mo d e | | aid the grounds for more
state machines, most notably are Mealy and Moore macliheslealy machines output

depends on the current state andheninput (transition oriented state machine), while Moore
machines6 out put de p-erierdes staienrachipned merefor, ¢hsasneé at e
model implemented using Moore machines usually result in more states compared to the same
model implenented using Mealy machines. For example, Waghal 10] present a

26

el

(s

microwave implementation that results in a Moore machine with 7 states, compared to only 5
states using Mealy machine.

2.1.1 The Evolution of tate Machines

A significant factor behind the development of the concept of state machines was the
understanding of the practical significance of state machines. A prominent step towards that
understanding is the work of Bordgdrl]. He realized that abstract state machines can solve
some central problems that had faced the ISO Prolog standardization committee for years. After
a number of unsccessful attempts few engineers from IBM, Quintus, Bim, Interface,

Sienens, demonstrated the benefits of state machines by highlighting the ability for supporting
changing designs. State machines have also been significantly utilized in hardware design.
Since the practical significance of state machines became widely edtdsptesearchers and
practitioners, there have been a number of case studies and experiments that explore the full
potential of this conceftl2]. This takes us to thate 1980s and early 1990s that méahke

origin of UML state machines diagram.

Specification and Description Language (SDL)

SDL has emerged from the communication domain and it is mainly used in the modeling of real
time and communication systeifis3]. SDL emerged from a study at the International
Telecommunication Union (ITU) in 1968. The first SDL standard was produced in 1976. SDL
has both graphical representation (SDL/GR) and a phrase or physical representation (SDL/PR)
[14-16]. SDL i s f ur t hGompamgUsplaasdsSBPld o n 178a g e

Harel Statecharts

Mealy and Moore machines suffered from a limitation; the machine was either in one state or in
another state. The machine is never in two states at the same time[1Aargtoduced the

concept of amnd-state This allowed thestatemachine, othe statechart, to be decomposable

into lower states, or suftates, of a high level state. Those-stdies need not be sequential;

Har el 60 s taechansalbvesdustates to be concurrent. In addition, Harel defined
communication and synchronization methods in which thesststiés can communicate with

each other. Daglass [18] has provided a welllefined enumeration of #8e communication and
synchronization methoddn 1988, Harel presented StateMgi8], a working tool that

encapsulates those concepts.

The Booch Method

Five years after the introduction8faeMate a new enhanced met hod, b a
statecharts, was introduced. Grady Booch developed an Object Modeling Language and
methodology thabecamewidely used in objeebriented modeling analysis and desjgf].

Boochdéds focus was on states and event s. Even

27

be external to the sys6ttatgkindndet edmshga. whahbe
a normal state, or a special state (initial state, eatd)st The method also supporstdteRegion

that can be either sequential or concurrent. Events are attached to transitions that can have
conditional expressions that are commonly called guards today.

The Object Modeling Technique

During the same peribof time, another methodology was being developed by Rumbaugh,

Blaha, Premerlani, Eddy and Lorensen, named Object Modeling Technique (@MTOMT

supported a@ynamic model that was primarily composed of statassitionsandactions The

dynamic model captures control information without regard for what the operations act on or

how they are implemented.t was conceptually very similar t

The Unified Modeling Language (UML)

The cevelopment of UML began in 1994 when Boocid Bumbaugh began their work on
unifying the methods. They were later joined by Ivar Jacobson, the author of OOSE-(Object
Oriented Software Engineering) method. The three authors created UML v0.9 in October of
1996[22].

Realizing the strategic importance of standardizing UML, a number of organizations joined
forces to form the OMG (Object Management Group). This effort resulted in UML v1.0 in

1997. In the same year, thtasdard was enhanced and UML 1.1 was released. The current
specification adopted by OMG today is UML 223] that supports 13 different diagrams under
three categories; structure, behavior and interactions diagrams. Oumataiee

implementation in Umple builds on the latest UML specifications, although we have not
rigorously followed UML for pragmatic reasons, and because we want to be free to explore new
ideas.

Current Developments

OMG, along with a number of industrialppaers, is developing new standards that enhance
UML executability; UML Action Language (UAL) and Action Language for Foundational UML
(ALF). These two standards are at an early stage of development. We elaborate on UAL and
ALF in Chapter 8: Related work

2.2 Umple state machine example

We illustrate Umple state machine basic syntax by briefly introducing a state machine example.
A much more complete demonstration of Umple state machine features is preséiiagtar

3: Syntax andemantics osimple satemachines Figure?2 illustrates a state machine of a car
transmission system.

28

N selectReverse
.—>[Neutral < | Reverse

selectNeutral
selectFirst selectDrive selectSecond selectNeutral
Driving reachSecondSpeed reachThirdSpeed
—\ [driveSelected] N [driveSelected]
@~ it > Second |2 (Third)
— dropBelowSecondSpeed S~ dropBelowThirdSpeed
[driveSelected]
selectFirst selectSecond

Figure 2: State machine of a car transmission

As shown inFigure2, the car transmission system is comprised of aléwel nested state
machine. The transmission startNiautralstate. While iNeutral state, the state machine
responds to four events; namedglectFirst selectDrive selectSecondnd selectReversevents.
Each event triggers a transition to a new state. For example, the trassiéiotseconttiggers
a transition tdSecondstate.

While in Second state, the transmission system responds to two egantsthirdSpeednd
dropBelovsecondSpesthat trigger transitions tdhird state andrirst state respectively.
Transition toThird state andrirst State are guarded. The guart/eSelectedhas to evaluate to
true for the transition to take effect. If the gudriveSelecte@valudes to false, the transition is
inhibited.

Next, we illustrate how this state machine is represented in Umple.

29

1 class Car {

2 transmission {

3 Neutral {

4 selectrevers e -> Reverse;

5 selectSecond - > Second;

6 selectDrive - > Driving;

7 selectFirst - > First;

8 }

9

10 Reverse {

11 selectNeutral - > Neutral,

12 }

13 Driving {

14 selectNeutral - > Neutral,

15 selectSecond - > Second;

16 se lectFirst - > First;

17

18 First {

19 reachSecondSpeed [driveSelected] - > Second;
20 }

21

22 Second {

23 dropBelowSecondSpeed [driveSelected] - > Second;
24 reachThirdSpeed [driveSelected] - > Third;
25 }

26

27 Third {

28 dropBelowThirdSpeed - > Second;

29

30 }} }}

Listing 1: Umple state machine syntax

Listing 1 illustrates Umple state machine syntax for the state machine illustrategline 2.
Line 1: declares a class named Car.

Line 2 a class attribute named transmission. Because there is no declared type, Umple defaults
the attributen Java to be aBnumand in Phgo be a string.

Line 3 to line 8 declares a statéeutral The state is an initial sta{emple setsthe first state
definedto be the start stateand has 4 unguarded transition&fReverseSecondDriving, and
First states.

Line 13 to line 30Creates a stateriving that contains several nested substdtast, Second
andThird. Some of the transitions betwdeinst, Secondand Third states are guarded
transitions.

Line 19 defines a transition from staf@rst to stateSecond The transition is triggered by the
eventreachSecondSpeed his is a guardeddnsition. The eveneachSecondSpeedll not
trigger the transition unless the value of the guhindeSelecte@valuates to true. Umple users
have two ways to declare a guarded transition. The transition can either be written as

event [Guard]-> StaeName

30

or alternatively, the transition can be written as

[Guard] event-> StateName

Transition may have optional actions. The syntax for the transition with action is as follows:
EventName / ActionName StateNamp

All actions have to be precededbye¢ c har act er @A/ 0. T hedbefogeu ar d c a
the transi tdd.n characters

The next section presents a survey and an investigation of existing state machine code generation
approaches.

2.3 Code Generation from State Machines

In this section, wegive a survey of existing approaches to code generation approaches from state
machine models. This survey guided our decisi@king process with regard to generating
executable artifacts from Umple models. We present Umple code generation and aam decis
poi nt s iState Blachine Design Dicisians o n 6o a g e

Different design approaches for code generation from state machines have been presented in the
literature[24]. Adamczyk brings together a number of implementation approaches for state
machines, andvaluateshem based on the flexibility of the implementation, problem domain

and user expectation8damczyk presents an implemetiba of a traffic light state system and
analyzes the ease with which the system can be maintairedly, the implementation patterns
discussed in this work are grouped based on the state machine element concerned; state, event,
transition and actiori-or example, the work presents three ways to implement a state:

enumerated values, methods and classes. An action on one extreme can be a single statement, or
a complex computation that can be encapsulated within a dedicated class. Adamczyldclassifie
acton implementation under three categories, unstructured code, methods, and classes.
Similarly, transitions can be implemented using tables,-gi@aten transitions, and class

A similar study,[1], investigates ernsions to the state pattern formulated as advice to
developers implementing state machine behavior.

31

Default State

/ State GbIECt '\
State Member /
.- \

T Exposed State

State-Driven Owner-Driven

Pure State
Transitions +—» Transitions

Figure 3: Extensions to state patterr{1]

As shown inFigure 3, the state object represents the core of the state pattern. Here, the state is
encapsulated as an objedh the pattern of StatBriven Transitions, the state object is
responsible for the handling of the transition. On the other hand)wmerDriven Transitions

pattern represents the case where the owning object is responsible for the implementation of the
transition. The State Member pattern deals with whether data members should be placed in the
owning object or in the State Object. efRure State is a pattern where the state object has
nothing but a statepecific behavior.

Dyson explains how different patterns suit different types of state machines. For example, if the
developer is faced with a large number of state objects, hassathe pure state pattern to cut
down on the number of objects required.

We identify state machine patterns by investigating existing tools that support state machine
code generation. We achieve thisdmnducing a survey and analyx the code generain from
state machines as exhibited in the existing open source and commercial tools. Our findings
indicate the existence of distinct design characteristics for state machine code generation. We
identify and group the design approaches under three cetggtiein-class patternthe
multiple-class patternand theextended multipkelass pattern Of those three design

approaches, none is an-tithe winner, as each alternative is more attractive underfircerta
circumstances. In this sectiome presenthe three main design approaches for code generation
from state machines, as well as variations of those approaches. While laying out the design
alternatives, we make reference to the latest commercial and open source tools and the design
each has adopted

While executing state machines and automated code generation have been reported in the
literature for some time now, a surprising number of sb&tde-art commercial and open source

tools do not supporstate machine code generatidxtcording to Gamter 6 s [25IBMO r t s
Rational Software Architect (RSAps of 2007js the top leading commercial objemtiented
analysis and design tool. For open source tools, Gartner in aneploet[26] putsArgoUML as

the most active UML modeling tool, arfstarUML as the most active open source tool that
supports UML 2.0. RSA ArgoUML, and StarUML support code generation from Class

diagrams, buprovide only limited support focode generation from state diagrams.

32

There are a number of other tools that support code generation from state maceieé&sgic
Tau[27], Mentor Graphs sBadgePoint[28], Borland Togetler for Eclipse[29], RSARealTime

and SmartStat¢30] are some leading commercial tools that support automated code generation
from state machines. On tlogpen source sid&sSMGaerator [31], ConcurrentHierarchical
StateMachine (CHSM) [32], HUGO[33], andFSM Frameworkoffer that support.

For the modelingtools that support code generation from state machines, we identified
significant variations in the design approach followed by the existing modeling tools
(summarized iMable2 andTable3 on page40). Even for the tools that adopt the same design
pattern, each follows a variant of it. Thigde variationcan be attributed to one or more of the
following factors:

1. State machine elements may may not be firstlass objecbriented elements, which
gives flexibility in the implementation of those elements. For example, states can be
implemented as simple data attributes, or instances of classes.

2. The existence of a number of design approacheds the lack of comprehensive
understanding of which design approach is most effective.

3. Certain application domains or platforms bring their own considerations, for example,
embedded applications or performaisemsitive systems have specific needs.

In order to move towards a comprehensive understanding of state machine code generation
design alternatives, we present the three main design approaches, and their variations as
exhibited in the literature and the existing tool implementations. Our analyalsats
candidates of those design approaches and aims at laying the foundations for more uniformity in
state machine code generation.

2.3.1 Design Approaches

In this section, we present the three design approaches, and their variations. We make reference
to canmercial and open source tool implementations whenever possible. We illustrate the
alternative design approaches by referring to the simple state macFkigerie4.

33

stioll/= €2 [g4]/ a2

StandBy

Figure 4: An Example State machine

The state machine iRigure 4 represents simple functionality present in a device. The device

can be in one of three statéx), Off, andStandBy Each state has an entry and exit action. Each
transition has a guard condition and aeldorresfg
triggers the transition from sta@ff to On, and the same event triggers the transition from state

Onto Off, depending on which state is active. Similadyy e@ ffir i gger s t he tr a
stateOn to stateStandBy and the same event will trigger the transition from s&iteadByto

stateOn. For simplicity, we assume guard conditions to be a Boolean variable, and all entry and

exit actions to be aifiction call. Events are triggered by an action external to the system.

This example is intentionally simple, as it does not include nested states, concurrent states, joins,
or forks. The simplicity in this example enables us to consistently implememxtdmple and
generate code from a wide range of available commercial and open source tools. We employ
two additional, and more complex, examples in our assessment and analysis (illustajeckin

9: Nested examplandFigure10: Concurrent exampje

2.3.2 In-class pattern

In this design approach, the whole state machine behavior is implemented in a single class. The
single class includes code to implement the core stateimeabbhavior, typically by means of
nested switch statement, if statements, or a transition table. The class includes implementations
for functions representing all entry, exit, and transition actions, as well as guard
implementations.

Variations. The ore behavioral logic is implemented as a switdtementor by implementing

a state transition table as in Mentor grapldsigePoint or a nested if statement asTialelogic

Tau The use of the deprecatgdto statement is reported in the literat{it¢, however, there is

no evidence thagoto statements are implemented in any of the existing open source or
commercial modeling toolsGoto statements suffer from weak readability and maintainability of
the generatedode, but may provide for a faster execution time.

34

Transitions in the implementation code are comprised of statements to call exit actions, checking
for guard conditions, transition actions, deactivating old state and activating the new state. Such
cock is typically embedded within the switch statement or nested if statemBgidogic Tau

groups such code in single methodi e a vthaf woalld execute all statements faffected
transitions whichresulsin a more modular and readable generated.ddagle adopts a similar
implementation of théeavemethod.

Another variation of the singlelass approach is the use of a code library that implements
specific functions that are called by the sta
execute a transition from one state to the other can be implemented in a separate library. This
approach is adopted Telelogic Tau

2.3.3 Multiple-class pattern

In this approach, a separate class is generated for each state that inherits from a Statessupercla
The superclass defines entry and exit actions that are then implemented in each state class. This
approach is adopted IHHUGO [33, 34] TelelogicRhapsody27], and SmartState. This design
approach is similar to the State design pattern presen{@b]in For theexample presented in
Figure4, adopting this design approachults in the class diagram shownRigureb.

Variations. This design pattern allows for a larger number of variations than-ttiasa pattern.

In addition to the variations related to the implementation ofstaee machine behavior, there

are variations related to when objects are created and destroyed. Objects representing states can
be created only when that state is active. Another alternative is for all state objects to be created
as soon as the state rhate becomes active. Yet another alternative, implementéeleiogic
Rhapsodyis the use of an additional helper class that implements the siEtéenhehaviar

35

] State
EgGl
Eg G2
g 53
g G4
(g EventD

g3, State_Behaviar ()

= on | StandBy
FaEntry () daEntry ()
?z E}{itl: g) = off gj E}{itl: g)
6 el 35 Entry () 6 52
#e2) 2 Exit ()
#el()

Figure 5: Multiple -class design pattern

2.34 Extended multipleclass pattern

In this approachpbjectorientationis taken even further, witeeparate class usedo implement

actions and, in some variations, guaf®%37]. This designpattern provides for some
centralization of state machine elements. In this approach, all actions, entry actions, exit actions,
and guards are grouped together in dedicated edasd-ollowing this design pattern to
implement our example results in thasd diagram ifrigure®.

Action | Guards
Q = Q Entry_Actions
1 - guards 4 - entry “Actions
- actions 1
- 35tate
1. astate 1
- 35tate 1
£ AState
g’._ SetCurrentStata () aState - et .ﬂ.l:til:lr‘@ Exit Actions
L
&2, 5M_Behaviar ()))
= On = Off] Standby

Figure 6: Extended multiple-class design approach

36

Variations. Variations for this design pattern are related to what elements of state machines are
grouped togther in a dedicated class. Fetample[38] Tomura implements a separate abstract
class for Entry Action, Do Action, Exit Action, and Guard condition. Other variations may
implement transitions in a separate clasdhen a dedicated class implements the state machine
transitions, the transition object will include statements to call any exit action from the current
active state, deactivate current active state, check any guard condition, call any transition action,
cdl any entry action into the new current state, and update the current state. This design
approach is referred to as Owaiariven transition[1]. If transitions are not grouped into a
transition class, then state ebjs are responsible for transition from one state to the other. This
design approach is referred to as Statiwen transition.

2.3.5 Alternatives within design patterns

In addition to the different design approaches, there are implementation specificsnthe ca
adopted within any design pattern previously presented. Those implementation specifics relate to
how states are represented and stored, as well as how actions, and guards are realized.

How states are represented

In the case of the inlass approachiates are represented by attributes. Those attributes can be
strings, or constant values, or simply integer attributes as implemeredbinState

In the case of the multiplelass and extended multiptdass design approaches, states are
representedsainstances of classes, with one class per state. The current active state is tracked as
a reference to the current state objetelelogicRhapsodycreates objects for all states up front,
which stay active in memory as long as the state machine istexgc Since in many systems,

there is likely to be a number of states machines active at the same time, upfront object creation
has performance significance especially since object creation can be expensive, particularly in
embedded systems, or systenithva large number of states. Gurp @&wkch[36] recommend

the Flyweigh pattern[35] that allows objects to be shared among multiple contexts.

How guards are realized

There ae three ways to implement guard conditions. The simplest way is the use of a Boolean
attribute or a Boolean expression to represent the guard condition. Alternatively, guard
conditions can be implemented as Boolean functions.

Semantically, guards premt transitions in response to an event whenever the guard vaiue is
This behavior can be semantically eqouarded| ent
transition An ignore event is a new event that is triggered when the original ev&iggered

and the Boolean expression is trugemantically, this is equivalent to assigning a guard

37

conditionand original event to theansition. This guard implementation approach is adopted in
Mentor Graphic8ridgePointtool. We illustrate this dggn alternative further iRigure?.

Event el [G]
‘ Statel } >“ State2 '

Figure 7: ignore event

Letds assume that when in Statel the state
transition to State2. In such a sition, the state machine implementation will check for the
value of the guard 6G6 before executing the t
transition is inhibited.

Thed i g n or edes@vaternatveéddoes not use a guard conditidawever, to implement

the same behavior of the state machinEigure7, we delete the transition shown and replace it

with a transition with a new event (say e2) that is triggered whenever el occurs angeG is

How actions are represented

There is ageneral conventioin tools and in the literatur® implement actions as functions.
However where the actions are implemented has a significant impact on complexity,
maintenance, and performance, as we disctisisda when we assess the design patterns.

Actions can be implemented in each state class, as in the mualagke pattern. Or, as in the
extendedmultiple-class pattern, actions can be grouped together in a designated action class.
There are two arguemts for grouping actions in the same class. The same arguments apply for
variations that group guards, transition functions, and entry and exit actions in the same class.
The first argument for grouping actions is to facilitate reuse and maintenartoe.setond
argument is to maintain the separation between the state machine behavior (represented by
actions) and structure (represented by the clasarhlgy)

On the other hand, in objeotiented best practices, classes should include functions that
manipulate the behavior of the instances of that class. Grouping all actions in a single class
breaks this conventionWe summarize the impact of grouping actions in a single claksbile

1. We further discusshe three design patterns and analyze their complexity, maintainability,
and performance in the next section.

38

Table 1: Variations of implementation of Actions

Grouping actions in the same class

Distribute actions on state classes

Applicable in
design

In-class and extendedultiple class
design approaches.

Multiple-class design approach.

Standard object
oriented design
principles

Breaksobject oriented design principl¢
of distributing responsibilities so that
each object implemesifunctions that

manipulates its own dafa.

In accordance with object oriertt
principles.

Reuse of actions
among multiple
states and state

Enhances reuse and facilitates
maintenance by grouping all actions i
the same entity.

Actions are disthuted on the classes of
each state, making reuse less intuitive ar
harder to implement.

machines
Number of State machine implementation result§y No additional objects created for actions.
objects in an overhead of one additional actig

object.
Actions State machine actions have first clasy Actions have no first class representatior,
representaion representation in the generated code/| in the generated code (implicit

representation).

Performance There is evidence of performance Distributing actions sees to reduce the

degradation.

computational overhead.

Summary of tools design approaches

Table2 summarizes a number of leading tools and the designs they incorporate. Out of the six
commercial tools and four open source soole examined, three adopt theclass design
pattern, three adopt the multipiéass pattern, and one adopts the extemdeltiple-class

pattern. Three tools had little to no code generation support for state machatds3 presents

design variations related to the state machine core behavioral implementation, representation of
states, and implementation of guard conditions.

2 In the case of the inlass design approach, the whole state machine is consideredatsitigle entity, and is
therefore implemented in a single class. In this case, there is no violation of standard object oriented design

principles, however, the power of object orientation is not harnessed.

39

Table 2: Tool design approaches

Design Pattern Little to no
In-Class | Multiple - Extended support
Class Multiple -Class
o | Telelogic Rhapsody X
g Mentor graphics BridgePoint X
3 | Telelogic Tau X
€ | SmartState X
o | RSA and RSM X
RSA RealTime X
c3 rgoUML X
3 2 | HUGO X
FSMGenerator X
FSM Framework [36] X

Table 3: Design variations implementation

If Switch Table | Representation | Guard Conditions
Statement | Statement | Driven | of states
FSM framework X
BridgePoint X Ignore actions
Tau X User defined expressiong
SmartState X Integer attribute
Rhapsody X Upfront State
object creation
FSMGenerator X String attribute
RSA RealTime X String Attribute®

Discussion oflte three design approaches

Figure8 illustrates the different design approaches and their variations. Some of the variations
alternati vteast, i dn &k.e

apply to all
Ot her vari at i
creationo, wh i
alternatives.

t hree de
ons ar e
ch i s

sign

applicable

-clasd gnd expepdédultipk class design

only

3 RSA RealTime also creates an Index for stededentify parent state in the case of nested states.

to

40

a
mu |

S L
t

Distributed action

Integer values implementation

| /
Constant values I Aftribuies /
. /
ot (Reprfsentatlon Actions L/ Centralized action
Strings | [ot
state onjects /| T St2teS N\ melementation
l.l /‘I Ignore Actions
Table driven - /
_\I II'
J II
- -"/ Guard /_ Boolean variables
o L=) —
Conditions ||
ore behaviorall State Machine
Logic | o
_Boolean functions
-
| |
J
/ \\. Ii-Statement
{ — - h - -
| T — Combination of
| Case-Switch __ : entrali 1t
| e) = Multple-Class | ety
/ Y actions, do actions,
——-"-'_F- .\'-.\
-
In-Class WJJrEEEEEEE. Lp-front object
) , Object = oraen
/= Creation .'__
: LA I A ' ! N
Use of code library w
- !

Extended-Multiple-Class [
All pode in single

class
J’l T
Trangitions groupad | Use of helper!
within functions | coniext class
S

Figure 8: summary of design approaches and variations

The three design approaches, and the design variations, illustrate the gap between the model and
the executable ate that exists in state machine modelinichis gap induces the modeling tools,

as well as developers, to maeathe modeling artifact and the executable code as two separate
entities. Making changes to one artifact will inevitably require some kind of synchronization;
otherwise the two artifacts quickly become out of synch.

The inclass approach results in a dilmanumber of classes, although the number of lines of
code inside that single class may be large, particularly if the state machine has many states or
actions, or responds to a large number of events. At the other extreme, the extended multiple
class aproach is assumed to provide for better reusability and maintenance, since all events,
actions, and guards are grouped in their respective classeq3Blapgues that the maintenance

and evolution of the generatecode from state machines, when actions are scattered, is very
complex. By grouping actions in a dedicated class, maintenance tasks become less complex. To
illustrate the complexity of the generated code, we applied a candidate of each design approach
to three state diagrams with varying complexity. The simple example is illustrakegluire 4.

The nested example, illustratedfkigure9, is comprised of four states, tivitwo nested states.

41

The state machine fRigure10 implements two concurrent states and is comprised of 5 states, as
well as join and merge elements.

4 ™
B3\
Three -
E4
One > Four
E2 El
Two “
ES
. S

Figure 9: Nested example

o N
State5

el e
Statel pP——>QgQ - ————=————=— State4
r

Figure 10: Concurrent example

Table 4 presents a comparison between the three design approaches and their corresponding
generated lines of code and number of classes.

42

Table 4: Design approach comparison

#of Least number of Lines of Cofle Least Number of classes
States
In- Multiple - | Extended In-Class | Multiple | Extended
Class | Class Multiple Class Class Multiple
Class
Simple 3 78 114 106 1 4 6
Nested 4 115 147 142 1 5 7
Concurrent 4 140 182 180 1 8 100

The number of lines of code for thedtass design pattern is consistently the smallest, while
there is no significant difference in the number of lines of code for the muiigde and

extended multiplelass desig patterns. Table5 presents a summary of the generated code from
TelelogicTauand Mentor GraphicBridgePoint Tau implements a variation of thedlass

design pattern where they make use sfiperclasso implement some of the functionality of

state machine behavior. The reported number of lines of code corresponds only-ddks in
lines of code. On the other ham&tjdgePointimplements a variation of the extendexdltiple

class design pattern, witlegerated classes factions, events definitions, the stateents matrix
that implements state machine behavior, as well as a header file for eaclBcidgsPointdoes

not support Java code generation; the reported numbers are based on a genexdgedlGere

is no support for guard conditions; therefore, all guards are ignored when generating the code
usingBridgePoint

4 Measured by the number of Java code lines to implement the state machine behavior.

5 Measured by the least number of classes in each design approach. In some variations of a specific desigthepmuosnér
of generated classes may be larger.

6 Variations in this design approach may result in a larger number of classes generated.

43

Table 5: Generated code from commercial tools

Lines of Code | #of Telelogic | MentorGraphics
States
Tau BridgePoint
Simple 3 100 1507
Nested 4 058 N/AT
Concurrent 7 N/AS N/ALO

Assessment of the three design approaches based on Complexity, maintainability, and
performance

The fundamental question of which dsesidegtn appr
by the diverse approaches and variations adopted by the commercial and open source tools
available today. We base our assessment on three factors; complexity, evolution, and

performance. Similar factors have been adopted for evaluating autbcoate generatiof89].

Complexity

We measure complexity of the generated code by Lines of Code (LOC), number of generated
classes, and the separation of structure and behavior of the state machine. LOEitslespit
apparent simplicity, is arguably the most effective measure for compld®ity The number of
generated classes increases the complexity of the generated code. Separation of structure and
behavior is the maindmefit of the extended multipledass design approach. As with cohesio

[41], the separation of structure and behavior results in systems that are less complex.

LOC analysis. As illustrated in

Table4, the inclass design pattern consistently resulted in a smaller number of LOC. On
averagecode generated with the-class design pattern is 74% smaller thanctiee generated
with the multiple-class design pattern and% &maller than theode generated with the
extended multiplelass design pattern.

7 This number ignores code in headlad, as well as code comments.

8 Telelogic does not support transitions intdramer state. The reported lines of code hence implement a thatléd
semantically different.

9 Telelogic supported orthogonaésted states.

10 BridgePoint does not support concurrent states.

44

Number of generated classes.

Tables illustrates the generated classes for the three examples.

Table6: Number of classes for different design approaches

#of Classes | #of States Design
In- Multiple -class Extended-Multiple class
Class
Minimum | Upto | Minimum Up to
Simple 3 1 4 5 6 11
Nested 4 1 5 6 7 12
Concurrent | 7 1 8 9 10 15

The inclass designattern always results in the same number of classes for the three examples.
For the multipleclass pattern, the number of classes is equal to the number of states, but can
have an additional helper class. For the extended muttigés approach, the sdnumber of

classes is between three and eight more than the number of states. This variation depends on
whether there are separate classes for entry, exit, and do actions, as well as guards, and
transitions.

Separation of structure and behavior Thecorrespondence between the structure of the state
machine and the generated code is more evident in the mullgsle and the extendeaultiple

class design patterns; this is because states are represented as classes. While in the case of the
in-class dsign pattern, this correspondence is less evident. From the state machine behavior
perspective, actions are distributed on all states in the mudiigds design pattern, while they

are grouped in a single class in the extenaedtiple class design paittn.

However, since actions are implemented as functions, they are cohesively grouped together
within a single class in the case ofdlass design pattern. A developefing to understand the
behavior of the system will know exactly where to look fdicars within the single class
implementation.

Maintainability

Maintainability, or evolution, fom the perspective of this analyssthe ease with which the

code of a state machine generated system can be maintained and modified. ldeally, evolution
andmaintenance tasks should be performed on the state machine model and the code
regenerated. However, in many cases models are either lost, or they are not updated and quickly
become obsolete, then maintenance tasks are performed on the generated fcodéeitsel

measure maintainability by the complexity of adding a new transition to a new state, and

45

measuring how much code needs to be edited, and wResgrammatically, to add a new
transition to a new state, the following micro tasks are required:

1. Edit core state machine behavior (whether it is switch, nested if statement, or table
driven)

2. Create Entry, do, and exit actions
3. Create transition from existing state to the new state.

4. Create transition from new state to existing states, if any.
For the inclassdesign pattern, the developer will accomplish all micro tasks by editing the same
single class. On the other extreme, in the extemdektiple class design pattern, the developer
needs to edit the core state machine class and the one or more actes class

Performance

We implemented the simple and the nested examples using the three design appreelelsss; in
multiple-class, and extendadultiple class. The core state machine behavior was implemented

by using a nested switch statement, and all guaeidle implemented as Boolean variables. In

the case of ktlass design pattern, states are represented by an integer variable. For the multiple
class and the extended multigass patternghe current state is identified by a reference to the
current sate object. The code for the three design patterns was manually written in Java.

We evaluate the performance of the same 1 million state transitions, taking readings every 100th
transition. The sequence of events was randomly generated. Each egsigned equal

probability of occurrence so that the number of occurrences of each event is probabilistically
equal. Because the number of events is vast (1 million) in comparison to the number of states (3
states in the simple example), each state wisemhand exited at least once. All guards were
implemented on each transition, but were assigned aftiixedalue. Since we are not

evaluating different guard implementations, assigned fikgelvalue to guard conditions ensures

that the performancanalysis results reflect the design pattern of the state machine
implementation.

The concurrent example incorporates concurrent states that have implementation specifics
beyond the scope of analysis of the design approach, and we therefore excludehie from
performance analysis. Our findings are summarizédgarell. The multipleclass design

pattern results in the best performance, only slightly better than-tiasis design pattern.

While the extended uaitiple-class design pattern implementation exhibited the worst

performance. Because the extendadtiple-class design pattern implements separate objects

for guards and transitions that have to be referenced in response to each event, this results in an
additional computational overhead and hence relatively lower performance.

46

Figurellillustrates the results of our performance analysis for the three design approaches. The
y-axis represents time, and th@xisrepresents the number of transitionge note that our

results did not give a straight line. We believe this is due to memory exhanoissome similar
operating system phenomenon

¥ 10000

10 /
8 Extended multipleclass 47

-

_—

time
o

i - In-class
- ”-H;-’"

~

Multiple-class

100,000 50m00 1,000,00@ansitions

Figure 11 Performance analysis of the threalesign approaches

Our results are in accordance with the performance analysis repoftdd. inn their work, they
analyzed a variant of the multiple class design pattern (that they named state pattern), and a
variant of the extended multiplelass design pattern (their proposed framework). Their
performance analysis concludes that the state pattern is more efficient if a lot of small transitions
take place, as was the case in our performance analysis. Thepmadtdade, however, that this
difference becomes negligible if the actions on the transitions become more computationally
intensive.

24 Summary

The history and evolution of state machines was briefly surveyed in this chapter. We also
introduced Umple's modelinapproach fosimple state machines. Videesented a survey of
state machines code generation where we identified three code generation patterns:

1. In-class pattern, where the entire state machine code is generated within a single class.
2. Multiple class patten, where each state is generated in a separate class.

3. The extended multiple class pattern is where additional state machine elements are
implemented in a separate class. For example, in this pattern, all state machine actions
can be implemented in a segi class.

We have drawn these patterns from studying existing modeling tools, both commercial and open
sourceWe made an assessment of each code generation pattern. This work laid down the

47

foundation for our experimental developmehstate machine® the Umple platform. As we
demonstrate in the next chapters, we have chosen-ttiads code generation pattern for Umple.

Reasons for thishoicearediscussed ithe next chapter in e ¢ t Degign defiisiols on page
62.

48

Chapter 3: Syntax and semantics of simple state machines

State machines in UMbave two types of statesimple states and composite states. Simple
states are the focus of this chapter. Composite states, the topidwb thext chaptes, can be
nested states (substates) or concurrent states.

In this chapter, we presetiite incorporatiorof state machine features into Umple. We present
Umple state machine syntard features related to simple stai¥'e also present the language
grammar, metanodel, andvariousdesign decisions we made.

This chapter focuses on the following aspects of state machines:
1. Designating an attribute for control by a state machine.
2. Creation of an arbitrary number of states and transitions.
3. Support of guard@onditions on transitions.
4. Support of transition actions.
5. Support of automated code generation for dahPHP
6. Support of inline implementation of guards and actions.
7. Support for reusablstate machines
8. Support for timer based events

The next sectiointroduces an example showing Umple state machine features.

3.1 State Machines in Umple: The Basics

An attribute in Umple can be declared to be a state machine. This means that its value
determined by various events that may occur. When an attributetislsxhby a state machine,
Umple does not generate a public setter for thabatt since updates to that attribute will be
controlled by the state machine itself.

States:Any string or integer attribute can have an unb@awimber of statesListing 2
illustrates an example.

49

class CourseSection {
status {
Planned {//state contents, events, transitions and actions }
Closed {//state contents, events, transitions and actions }
}
}

Listing 2: Attribute controlled by a state machine in Umple

This defines the string attribustatusto be controlled by a state machine. This state machine
has two state$?lannedstate andClosedstate.

Umple by default makes the first state to be the staté. In our exampl®lannedstate is the
start state. Any state that does not have any outgoing transitioorssisieredin End state.

We now can define the state machine behavior by adding events, guards, transitions, and actions.

Events From astate machine perspective, events occur outside of the system; the system only
reacts to those events. Umple, therefore, implements-bagudiing functions. These event
handling functions execute steps to check the current state of the state machaad!, amy

entry and exit functions, and executing the transition actigucifianactionexists.

Because Umple supports native code, the developer can write any function that could trigger any
Umple event. This is a powerful feature in Umple becaug®ets the developer the ability to

call Umpl e events at any ti me. However, it
event function does not have any side effects.

Before we show an example of Umple eventtaynwefirst introducetranstions.

Transitions: Umple supports syntax for state transitions. Umple also supports reflexive
transitions, where the new state is the same as the start state.

The next example adds a transition to our state machine.

status {
Planned {
registerStud ent -> Closed ;
}

Closed {}
}

The example above defines an evegisterStudenthat triggers a transition to the st&ksed
Umple events are implemented as functions that return a Boolean value. If the event results in
triggeringa transition, true is returned, otherwise, false is returned.

50

Guards: Guards may prevent a transition from occurring. If the guard evaluates to true, the
transition is triggered, otherwise, the transition is inhibited.

Umple uses the square bracketsyhjch is the same as the UML syntax for defining guards.
The following code shows the additionafjuard taatransition.

[authorized] registerStudent - > Closed;

This guard means that only if the value of authorized is true, that the transitionesddgdNote
that authorized has to be a Boolean variable, a Boolean expression, or a Boolean function. The
guard syntax could also be written as:

[authorized == true] registerStudent - > Closed;

The code inside the square brackets hasto maéchthat i ve | anguage code.
intention is to generate Php, the user has to use Php syntax, and if thetession is to
generate Java, the user has to follow the syntax for Java.

Umple also supports any function call within the squaaek®ts, as long as the function returns
a Boolean value. This enables developers to create guards once, and reuse them in as many
transitions as they wish.

Umple also supports guartisappear syntacticallgfter the event. Thisanenhance readability
and usabilitywhen there are many transitions and the developer wanfgerson reading the
code to more readily notidtke names oévents. For example, the transition above can be
written as:

registerStudent [authorized] - > Closed;

Actions: Umple supprts the three types of state machine actitrassition actios, entry
actiors, and exit actios

A transition action is an action that is associated with a state machine transition. An entry action
is an action that is executed upon transiting inttages Similarly, an exit action is an action that
is executed upon transiting out of a state.

The following shows &ansition action.

51

registerStudent /{sendNotification();} - > Closed

This transition reads as follows: when the evengisterStudenbccus, execute the action
sendNotificatiofl) and transit to stat€losed In this example, the transition action is a function
call.

Umple also supportactions to be any native code, or block of code. For example, the following
transition when triggeredrpi ntrarsitodd on t he consol e:

registerStudent /{System.out.printIn("transition™) ; } ->Closed;

As with guards, Bbowing actions to be any function caieansactions can be reused across
transitions state machines and classés addition, the sam&ction can be reused as entry or exit
actions.An Umple user can create a method to call multiple actions and/or events. This approach
enhances the usability of the language by grouping together a number of actions and events
within the same method.

The Pllowing is an example adn entry and exit action for the st&ksed

Closed {
entry /{ System.out.printin(fentry action N ;¥
exit /{ System.out.printin(fexit action N ;¥

This creates one entry and one exit action for the €lateed This means, whenever we transit
into Closed the entry action is executed, and whenever we transit @lbséd the exit action is
executed. Similar to trangin actions, entry and exit actions can also be functios, @id can
be reused in the same waiy addition, it is possible to have more than one entry action or exit
action associated with the same state.

Do Activities: Actions take a negligible amount of time to execute. Do activities, on the other
hand, represent a longarmning computation whe in a state. In languages such as Java that
support it, a thread will be starteddrecute the do activityl his allows the state machine to
'stay live' and be able to respond to other events, even while the do activity is running. A
transition out of atate terminates the do activity.

52

The following is an example of a do activity in tG®sedstate.

Closed {

do {doThisContinuouslyWhileClosed();}

3.2 Grammar defining the syntax of Umple state machines

The grammar to parse state machine elements hmsémbedded within the grammar that
parses classes, attributes and associations. This is because the parsing process has to recognize
the tokens for class and state machines at the sameTtimgrammar is published as part of the

Umple Google Code pregt[7] and can be found in the following directory:
svn/trunk/cruise.umple/src/umple_state _machines.grammar

53

R1 | classContent ‘[[comment]]|...| [[stateMachine]| [[extraCode |]

R2 | associationClassContent I comment]]|...|[[stateMachine JJ|[[extraCode]]

R3 | stateMachineDefinition
statemachine [name] { [[state]]*}

R4 | stateMachine [enum] | (I inlineStateMachine 11
R5 | inlineStateMachine ;
[name]l { ([[comment]] | [[state 1])*}
R6 | enum :
[namel {}| [name]{[stateName](, [stateName])*}
R7 | state
[stateName]{ ([[comment]] | [FchangeType: - 112 (I stateEntity 11)*}
R8 | stateEntity -
=-1 110 transition [IRNI entryOrEXxitAction IR activity]|

[state T]]

R9 | transition

[[guard J][[eventDefinition 11 ->[[action J]?[stateName]; |
[[eventD efinition NIl guard]? ->[action]]?[stateName]; |
[[activity]J] ->[stateName]

R10 | eventDefinition -

[[afterEveryEvent j] [T afterEvent]| [event]
R11 | afterEveryEvent -
afterEvery -([timer] -)

R12 | afterEvent -
after -([timer] -)

R13 | action
[{[** actionCode]}

R14 | entryOrEXxitAction :
[=type: entry |exit]/{[* actionCode]}

R15 | activity
do {[* activityCode]}

R16 | guard :
[[** guardCode]]

Listing 3: Umple state machine grammar

3.2.1 Overview of the notation

The grammar notation that Umple uses is slightly different than the standard EBNF notation.
This is because the Umple language is unique in the way it supports the embedding of arbitrary
native languages. At the time of writing, Umple supported Java, RaobyRkap. Additional

language support is underway. This means that an Umple user can choose to embed a wide
variety of native code within Umple. The grammar #melparser therefore need a mechanism to
be able to identify blocks of code and accept themwagh®ut parsing. However, the grammar
notation developed for Umple resembles as much as possible the EBNF. The following
discussion clarifies Umple grammar notation.

54

Managing rule names

The Umpl e grammar intr @duaeéd petid erdnolicharacter c har ac
that controls whether the rule name is added to the tokenization string or not. The minus
character is useful when a rule acts as a place holder to help modularize the grammar. By adding
the minus character to the end of the rdene, it removes the rule name from the tokenization
string. For example, in rule R8 Insting 3, the rule namstateEntityis not added to the

tokenization string. This helps keep the tokenization string for states relativefyasdosimpler

for testing and debugging.

Non-terminals

The Umple grammar supports two types of non terminals, simpkeenomnals, and ruldased
nortterminals. A simple noterminals is a sequence of characters that iswlutespace and is
delimited bythe next symbol as defined in the grammar.

inlineStateMachine: [name] { ([[state]])* }

In this example, name is a ntgrminal followed by a curly bracket, a space, or a new line
character.

The rulebased notterminal notation uses double square bedskin the example above, state is
a rulebased nofterminals, which is defined in R7 Listing 3.

Managing code blocks

As we explained, the t ok«kipdwaeaddébocks vpthootangys s mus
strict parsingules. This special need for Umple is the main reason why Umple grammar does
not use Atlr [42]. The grammar notation supports two methods to accomplish this task.

entryOrEXxitAction . [=type:entry|exit] / { [*actionCode] }

This rule defineshat an entrypr exit action is defined by the terminal entry or the terminal exit,

foll owed by the terminal AdctonCodendl imbtchwe d by a ¢
everything until a new line character is reached. This is very useful for Umple because it means

that the action code can be specified in any target language, and allows the grammar to stay
unchanged as new languages are added.

Note that this means that an action code must be in one line. This is an undesired limitation.
Umple grammar therefore suppatte following notation.

55

entryOrEXxitAction . [Ftype:entry|exit] / { [**actionCode] }

When the action code is precededtbwo st ars fA** 0, the rul e wi
new line character until the next character sequence is maidmnedneas that action caspan
multiple lines with no limitation on the sequence of action code itself.

The following explains Umple grammar rules for parsing state machines that #sgng 3.

R1 and RalefinethatUmple clasesand Unple association classeanhave state machiseas
attributes

R3 defines a state machine by the keywsiedemachindollowed by a name followed by a
number of states between curly bracké&tss is used to declare a state machine independently of
a clas.

R4 definegwo types of state machines in Umplat can be embedded in classsum and
inline state machine

R5 and R6inline state machines are defined as a name followed by a number of states (R5).
Enumstate machine@R6) are empty state maclas,or state machines with only states (with no
transitions or actions) hese are logically equivalent to an enumerated data type. The only way
to change the state is to set the state using an assignment statement.

R7 and R8 define a state. Notice thatate contains state e, whichthemselvegan be
states. This supports the implementation of nested and concurrent states discuSkagtar4:
Syntax and emantics otomposite statenachines

R9 definedJmple state mache transitions.

R10, R11 and R12Jmple defines three event typadterEveryevent, andifter event, and the
generic eventThe first two are timed events, causing a transition to be taken after a certain
amount of time has lapsetihe main difference befenafterEveryand theafter events is that
the timer automatically resets itself and starts counting again. While in the cHter efent, it
is a simple timer that triggers the event after a specific amount af time

R13 and R14Umple supports thregpes of actions; transition action, entryiant and exit
actions

R15: This defines do activities, that start a lwagning and interruptible thread to perform some
lengthy computation, for example.

R16:Guards, similar to state machine actions, caddfmed in any native language.

56

Notice that the grammar is agnostic about composite state machines. Concurrent states and
nested state machines are handled at the-meti| level. This is discussed in greater details in
Chapter 5Implementation of composite state machines

3.3 Umple state machine meta -model

TheUmple state machine metaldodel is similar to the UML 2.2 metaodel There are
elements that are in our matadel that are not in the UML 2.2 matadel specificationf23].
We introduce our metenodel first, and then discuss the similarity and differences with the UML

2.2 specifications.

We built the state machine metadel using Umple itselfFigurel2 illustrates thdJmple state
machine Meta model visually, and using Umple syntax.

Transition

class Transition

{

- o+ o
?lass State 0.1 * —> 0..1 Event:
. * —— 1 State fromState;
EZEi;ar iaStarcscas *o * —> 1 State nextState;
P TooTmTE T * —> 0..1 Guard;
1 — 0..1 RctivitsT
- Cn o meed = 0..1 —> 0..1 Action;
e ACLLOH; toState
* —— 1 StateMdchine;
0..1 parentg@tate —--)
0..1 StateMachine;
} = Event
are
Guard name
name

condition

isStartsState:Boolean

isTimer:Boolean

timerlnSeconds

0.1
class Guard

{

condition;

class Event

{

name ;

Boolean isTimer = false;
1 timerInSeconds = "0";
0.1 1 0.1 :
Action o
actionType StateMachine Activity ?lass SCELVITY

actionCode

isInternal:Boolean

class Rotion
actionType = null;
actionCode;

Boolean isInternal = false;

name activityCode activityCods;
}
*
clas=s StateMachine
{
name;
* —— 0..1 UmpleClas=s;
key { parentState, name }
0.1 }

UmpleClass

Figure 12 Umple metamodel

57

As shown in the metenodel,UmpleClasscan be associated with many state machines. This is
because each Umple class can have multiplep, state machines. A state machine, however,
may, or may not, be associated withldmpleClass This is because Umple supports standalone
state machinestate machines that are not yet@sated with any Umple Claddmpleuses a
novel approach fohandling composite states (nested, concurrent, forks, joins, history gnd dee
history states) thakquires only minimalmetamodel dependency his approach is the topic of
the next chapteBecause Umple supports reusing of actions and guards; g s lito-

many relationship with transitions. Similarly, a state can be associated with many Actions.

The differences in attributes with UM?2.2 are summarized ihable 7.Some of the differences

are because UML 2.2 includes specifications for the visyaut of the diagram. For example,
UML 2.2 specifiessonnection pointfinal state andPseudoStateKindvhich are related to the
visual layout of the state machine diagram. Umple supports regular events, and timed events;
therefore, we have additionattribute for the events, while UML 2.2 imports events
specifications fromJML:: CommonBehaviours:: Communications :: Trigger.

58

Table 7: Comparison between Umple and UML 2.2 state machine metaodels

Umple state machine metanodel

UML 2.2 state machine metamodel

State string: name boolean isCompositeisOrthogonal
_ IsSimple isSubmachineState
boolean isStartState
Transition No attributes kind: internal, local, external
Pseudostate | Umple handles sonmgseudostates | initial, deepHistoryshallowHistay, join,
differently (refer toChapter4: fork, junction, choiceentryPoint exitPoint
Syntax and emantics otomposite | terminate
statemachinesandChapter 5
Implementation of composite stat
machiney Entry and exit Points
are not supported
event string: name UML:: CommonBehaviours
o Communications :: Trigger
boolean isTimer
float: timerInSeconds
Action string: ActionType UML :: CommmBehaviors:

string: actionCode

boolean isinternal

BasicBehaviors: Behavior

Statemachine

string: name

No attributes

Activity string: activityCode UML :: CommonBehaviors
BasicBehaviors: Behavior

Guard string: condition UML::Classes:: Kernel :: Constrain

Other No metamodelrepresentation Region, Vertex, ConnectionPointRefereng

elements Refer toChapterd: Syntax and FinalState

semantics otomposite state
machinesaandChapter 5
Implementation of composite stat
machinedor more information on
how Umple handles composite
state mabines.

59

3.4 State Machine Design Decisions

In this section, we state our motivating goals and present the major design decisions we made
during the building of state machines in Umple.

34.1 Umple state machine @pls

Our objective is to create a straightforward syntax that can enable developers to quickly,
efficiently, and sufficiently create executable state machines. Umple should provide a simple
syntax to create and define state machine elements. We hdo#aeng syntax, design, and
generated code related goals:

Goal 1: Minimal use of reserved words.

We should avoid the introduction of new reserwerds asnuch agpossible. Reducing the
number of reserved words reduces the complexity of the langudgaakes it easier to learn.
Wherever we do introduce reserved words, we should consider using reserved words that are
used for the same purpose in other languages.

Table8 summarizes the keywords and symbols used in Umple.

Table 8: Umple state machine keywords

entry/ An element of a state. Designates an entry action.

exit/ An element of a state. Designhates an exit action.

do An element of a state. Designates a do activity.

Final A special state when relaed indicates that a state machine is completed.
[] A symbol for guard conditions.

-> A symbol for transition to a next state.

| A symbol for a concurrent region.

{} Curley brackets used for actions code.

By using concise syntax grammar, we werle ab eliminate the need to use keywords for the
following state machine elemer(fBable9):

60

Table 9: Minimizing the number of keywords

State machine An attributenamefollowed by a bracket is identified asstate machine.

Start state The first state is the start state.

End state Any state without outgoing transitions is considered an end state.

Action code Action code is native language code between two curly brackets.

Transition Transitonackh n code follows a 06/ 6.

action

Guard code A native language code that must evaluate to a Boolean value pladed
between two square brackets.

Nested states Nested states use the syntax of nestety brackets.

Goal 2: Umple syntax should be concise.

Devebpers should be able to create and specify state machine elements in a concise manner.
Concise syntax contributes to enhanced readabidgnprehensibility, anteducel complexity.

Goal 3: Umple syntax should be easily extensible

Whenever possible, Ump#g/ntax should allow for additional functionality with minimal
disturbance to the syntax, and underlying tokenization and parsing processes.

Goal 4: Umple syntax should look and feel like high level programming languages.

Developers who are already accuséal to writing code should find Umple familiar and easy to
learn.

Goal 5: Umple syntax should eliminate the need to edit underlying generated code.

Umple supports native code for all types of actions and guard conditions. The syntax should
enable developeto satisfy their development needs without requiring the editing or inspecting
the generated codehis is similar to how software developers do not generally inspect the code
generated by the high level programming languages compilers.

Goal 6: Umple generated code should be efficient.

By efficient we mean that the code should satisfy the state machine semantic behavior, while
havng comparable performance levels to the best code written by hand.

Goal 7: Umple generated code should look like code writteby hand.

The generated code shoulddsereadable as the bestite machine code written by hand. The
main reason for this is so that programmerseasilyverify it. Note that there is no
contradiction between eliminating the need to edit the codd 8}@ad this goal. We aim at

61

making Umpl eds generated code easy to under st

edit Umple code itself to make any necessary changes.
Goal 8: Umple should exploit textual modeling potential.

Textual modeling, welaim, allows us to create state machines modelsumique and powerful

way. For example, Umple should maximize reuse of state machine models. It ought also to be
possible to, for example, merge several state machines or compose them from textual files
containing various components of a state machine. The appearance of muiopie fac the
samestate should also be supported, with the compiler simply combining them.

3.4.2 Design decisions

This section presents the design decisions we have made. We pres#ggign alternatives, the
decisions made, and align our decisions to our stated goals.

Decision Point 1: State machine design pattern
Contributes to goab and goal 7

| n s eQ@odeiGeneration from State Machioes o n 31pvee gresented our survey of
existing design alternatives for state machine code generation as exhibited in tbétskatat
commercial, open source, and research prototype tools. Our Umple state machine
implementation agpts a variant of the €lass design pattern. The@Giass design pattern has
the following properties that contribute to our Umple goals:

1. Number of lines of Code.
The InClass design decision results on average in a smaller number of lines of code.
2. Perbrmance considerations.

The InClass design pattern performance analysis results in performance that is
significantly better than the extended multiolass design pattern, and only negligibly
worse than the multiplelass design pattern.

3. Number of genetad classes.

The InClass design pattern always generates a single class. Comparison of the three
design pattern is summarizedTiable6 on page45. In typical systems that are

comprised of a numibef classes, having more classes generated for a state machine
implementation results in generated code that is less intuitive, and confuses the developer
sinceclasses that represent real system entige®me mixed witlstate machine
implementation clsses.

62

4. State machine for attributes.

Because Umple supports state machines for attributes that are already within an Umple
class, it is more convenient to generate the state machine code within the same Umple
generated class. The simplicity can be everemsgnificant when there are multiple
attributes in a given class, each with its own state machine controlling it.

There are factors that may result in other design patterns being more attractive. For example, our
Umple syntax and metmodel, as well ade parsing and tokenization mechanisms, support
reusable actions and reusable guards. Implementing reusable state machine elements may be
easier if another design pattern is adopted. For example, generating a dedicated class for all
actions may make itasier for developers to locate actions and reuse them. This is particularly

true for a state machine diagramith a large number of actions. In addition, having more

classes means objects that are created are smaller in size, which could mean eahdinoed r
performance.

The mitigation of such compromises brings about the following alternatives:

Alternative 1: Always implement the hClass design pattern regardless of the state machine
characteristics (size, reusable actions and/or guards, etc)is Tisalternative that Umple
currently adopts.

Pros: The generated native code always looks the same regardless of the state machine
characteristics. In situations where developers neespectthe generated code, the code will
look more familiar angbredictable. The Umple platform is hence less complex, as we always
generate the code using similar templates.

Cons: Less flexibility, as the user cannot override the chosen design pattern.
Alternative 2: dynamically apply a design pattern based on the snachine characteristics.

This alternative implies that the characteristics of the state machine itself (i.e, number of states
and transitions) determine the design pattern used for code generation.

Pros: The generated code is customized to the tiyptate machine under implementation. The
size of the generated code may be well balanced on a number of classes if the state machine was
large in size.

Cons: The generated code is more complex, and the number of classes is larger in the case of
multiple-class pattern and extended multiplass patterns. The generated code pattern is more
complex. Developers, particularly who need to validate the generated code, will be faced with a
number of different code patterns.

Alternative 3: Allow the developeto choose, or control, the type of design pattern to be
adopted.

63

This alternative implies that Umple useould be able tinclude a directive to control which
design pattern to be used for code generation.

Pros: maximum flexibility is given to the userdboose which design alternative to adopt.

Cons: This alternative shifts the burden to the developer to decide on the most appropriate design
alternative. This also increases the complexity in the language, and the underlying Umple
platform.

Decision Poih2: Handling of events
Contributes to goal 6 and goal 7

A state machine responds to the occurrence of events that are typically, but not always, outside
of the context of the state machingeif. The eventshatUmple state machine responds to are
implemented as public functions that can be called by any component of the system. The
functions return a Boolean value; true if the event has resulted in transition, and false otherwise.
This implementation results in maximum flexibility, as those publictions can then be easily
encapsulated into functions that can implement additional event types.

Decision Point 3: Core state machine behavior
Contributes to goals 5, &nd 7

Unlike most code generated from the surveyed modeling tools, and even thoeghisien

Umple users to never edit the generated code, Umple generates code that resemhblagdrand

code. We distributed the core state machine behavior for each event handler function. The event
handler function uses a switch statement on the duactive states, and determines the

appropriate behavior.

Each transition requires the following steps:
- Check for guard conditions
- Execute exit action(s). There may be multiple exit actions for nested states.
- Execute transition action.
- Execute entry acti(s). There may be multiple entry actions for nested states.

To hide such details, we encapsulated these actions within a function, similar to the approach
adopted in th@elelogictau modeling too[43].

Decision Point 4tmplementation of composite state machines
Contributes to goals 1, 2, 3, 4, 7, and 8.

64

Composite state machines are state machines with nestesbsted@current regic Umple
supports nested states without introducing additional keywords. Umple asgsthx of nested
curly brackets to define nested states. For concurrent regions, Umple uses the symbol ||.

For implementation of the code generation for composite states, Umple neeel
methodology. Traditional code generation from composite statbings results in generated
code that is exponentially large, harder to read, understand and maintain.

The syntax, semantics, and code generation for composite state machines are the topic of the
next two chapters.

3.5 State machine reuse and mixin s

Contributes to goal 8.

Umple supports an unbounded number of state machines in every class, each of which can be
defined independently. The same event in Umple can trigger transitions in one or more state
machines. Simple functions defining guards and actionbeaawsed across a number of state
machines, or across classes and components, and again the definitions of these can be defined
independently, allowing mixing in of different sets to explore differequirements

The following simple example illustratessimple traffic control system, where the pedestrian
light is dependent on, or controlled by, another state machine controlling the car traffic. For
conciseness, we illustrate only partial models.

class trafficLightSystem {
carTraffic {
Red {
entry /{goingRed();}
after (redTimer)[!emergency] ->Yello w
emergencyNotice - > AllRed;
}
pedestrianTraffic
DontWalk {
goingRed [lemergency] - > Walk;
emergencyNotice - > DontWalk;

)

In this example, the eveemea&gencyNoticdriggers daransition in two separate state machines
in the same class. Similarly, the guardergencys used in two transitions in two state
machines. The example also shows how an action in one state mgoimig&ed), can
function asan event and trigger a transition in an another state machine.

65

We have so far presented one aspect of reuse andsimximple, where more thaone state
machine can reuse etents and behave inteindently. We now illustrate ather aspect,
where comfete state machines are reused and customized.

A traffic |1 ght 0-<asdddaransitions bgmehrea states, Redj Geert, anadne r
Yellow. This simple and basic model can initially be implemented as aatane state
machine, and later incporated into various classes:

For simplicity, we continue t@resent partial models.

Statemachine coreTrafficController {
Red {
After(redTimer) - > Green,
After(greenTimer) - > Yellow;
After(yellowTimer) - > Red,;
1}

In systems where a basmaffic light is desired, the previous standalone staaehine can be
referenced as follows :

class TrafficLightController {
simpleController as coreTrafficController;
}

This example creates a state machine caliegle Controllerthat behaves idewtlly to the
coreTrafficControllerstate machine.

Some traffic lights may have additional states, like flashing red, or flashing yellow, that are not
part of the basic traffic | i glrtryfdr shbra Addiog .
such a feture can be accomplished addais:

Class TrafficLightController {
FrFy as coreTrafficController {
Red {
+ midnightHour - > FlashingRed; }

FlashingRed {
morningHour - > Red,;

1}

The previous example illustrates a scenafiadding to a basic state machine. The next
example illustrates removiranexisting element of a state machine.

Let6s assume now we are modeling a traffic
either Red or Green. We call this traffight H-wayfor short.

66

Le

class TrafficLightController {
H way as coreTrafficController {
- After(greenTimer) -> Yellow ;

1}

This example illustrates a scenario where a transition is removed from the model

The praess of modelingontrollers may revea number of reusable stateichines.These

reusable state machines can then be refined and used as we described above. The outline view of
theUmple editor (discussed Bection3.7.1Umple textualon pager0) facilitates the discovery

of such reusable state machines.

3.6 State machine timers

Umple state machines support two types of tim&ftertimers andafterEverytimers. Theafter
timer fires an event to trigger a histion after a specified amount of tin@n the other hand,
afterEverytimer fires an event on a specified intervals to trigger a transifiba.bllowing is an
example describing timers in Umple.

class Timer {
boolean G = true;

status {
S1 4
after (5) ->S2;
}
S2 {
afterEvery (5) [G] -> 81,
}

}
}

In this example, while the state machine status is in S1, and after 5 seconds, a transition to S2 is
triggered. This timer expires only once, and if for any readoansitiondoes not occuif there
is a guard that evaluates to faldie timer is not restarted.

In the same example, while in S2, and after every 5 seconds, a transition to S1 is triggered
subject to the guard his timer is restarted automatically every asels.The concept is that the

state machine will keep trying until the guard becomes true.

The implementation of this timer behavior usestitmerTaskin Java. For this example, Umple
defines two helper variables as follows:

67

/[Helper Variables

priva te TimedEventHandler timeoutS1ToS2Handler;
private TimedEventHandler timeoutS2ToS1Handler;

The event handling method is similar to any normal transition. The event name given to this
transition timeout <name of the source state> <name of the destistdie>.

public boolean timeoutS1ToS2()
{

boolean wasEventProcessed = false;

Status aStatus = status;
switch (aStatus)

{
case S1:
exitStatus();
setStatus(Status.S2);
wasEventProcessed = true;
break;
}

Since states may have otlmrtgoingtransitions, it is required tstop timers whenever we exit
stateswith active timersThe following methods called whenever state S1 or S2 is exited

private void exitStatus()
{
switch(status)
{
case S1:
stopTimeoutS1ToS2Handler();
break;
case S2:
stopTimeoutS2ToS1Handler();
break;
}
}

Similarly, any transition into either S1 or S2 should start the timer.

68

private void setStatus(Status a Status)
status = aStatus;

/I entry actions and do activities
switch(status)

case S1:
startTimeoutS1ToS2Handler();
break;

case S2:
startTimeoutS2ToS1Handler();
break;

3.7 Umple textual editor and automated update site

Contributes to goals 4, 5, and 8

In order to enhance Umple adoption and increase the pool of available participants for our
grounded theory study, we need to enhance Umple editors. The challenge is that the Umple
systan and language are under continuous development and modifgkafitne approach for the
textual editor has to acconaalate thisaspecof Umple. An Umple textual editor ha® be

tightly related, and at the same time loosely coupled, with the underlymmeltomponents.

This allows us to quickly refactor changes in the Umple langaadéringthemto the editoy

and at the samt#me, not depend on the editior any change in Umple.

Umple

Populated Code Generated

Tokens
meta-model oy Artefacts

Figure 13: Umple high-level system componerst
Figurel3illustrates Umple components that relates to the editors. As we show in the next two

sections, th Umple textual editoreliessolely on Umple Grammar and Umple Metmdel
respectively.

69

3.7.1 Umple textualeditor

We have bilt an Umple textual editor based on Xtext technolpgd]. Xtext is a language
development platform that supports the development of general purpose programming languages
and domain specific languag&¥e have identified ¥xt to be a suitable approach to implement

an Eclipsebased Umple textual editor for the following reasons:

1. Xtext is open source.

2. The Xtext based editor becomes tightly related to Umple grammar. This meatosréilct
any change in thBmple grammarequires only straightforward changes to the
correspondingKtext Umple grammarAs future work it isplannedio be able to generate one
from the other.

3. We can easily extend the editor to limit side effects, where the developer may gain access to
aspects ofhe generated code that he is not supposed to; for example, a transition action that
may update the value of the state machine.

4. Most importantly, Xtext is built on standard technologies, like Java and [4&flr Building
on standard technologies simplifies maintenance.

70

RNIR R R CRCR A

(2)

= fﬁFDEhug' ay Imnple I

2
|=| *entryExitTransitiondction.urmp &3

=

namespace ceXsmple;

class LightFixture
{

bulb
i
on o
entry / { doEntryi(): }
@ exit i doExiti): } j]

push -> /{ doTransitioni):
H
Off {1}

7

©)

=

il

0= Cutling E@]\ & |4 ﬁ\F
g = Model U
&--I= LightFixture
&= classCantent
&--1= bulb
Ela = OI'I

=
[/ Problems 22 fiz! Javadu:u:} [Declaratiun}

1 error, O warnings, 0 others

Descripkion =

I Resource

I Path I Location

E @ Errorsiiteml

EE' mismakched input '{' expecting ')] entryExitTransitiDn@ump ,l'wreFwreF,l'entryExitTransitiDn.ﬁ.ctiDn.um|

Figure 14: Umple textual Editor

Figurel4illustrates some of the featurestie Umple textual editor.

1. Umple perspective. Clicking ohé Umple perspective opens the layout that is most
appropriate for Umple development.

2. Outline view shows the elementstbé Umple model organized in a hierarchy. The

elements shown correspond to both Class and state machine modeling elements. Qptionally

the developer can choose to show the native code hierarchy.

3. Sophisticated error recovery in the Umple textual editor. In this case, the model is missing

the forward slash before the action code. The editor identifies the syntactic error, and
quickly recovers and continues parsingoatst guess the next token.

4. Error messages with expected tokens.

3.7.2 Automatedupdate site

As the number of Umple contributors and users are expana@gnplemented a mechanism
whereby users running Umple phigget notified automatically whenever there is a newer

71

Umple release. We achieved this by implementing an automated upddiféhstea new
version is releasedhe Umple Eclipse plugin notices the server version is newer than the local
version, and prompts the userdutomatically download and install the newer version.

3.8 Summary

In this chapter, we introduced the syntax and semantics of simple state machines in Umple. We
introduced the Umple grammar, and the matadel. We compar ed -fdongitothéd s met e
latest UM state machine metaodel.We discussed the major design decisions we took, such

as the code generation patterndiged the approach to represent state machine model elements
textually in Umple. Our decisions were largely driven by a number of goalshwhemselves

were derived from the vision for the Umple technology. Umple design goals are:

Minimize the use of reserved words.

Keep the syntax concise and extendable.

Umple syntax should look and feel like high level programming languages.
Eliminate theneed to edit the generated code.

The generated code should be efficient.

The generated code should look like code written by hand.

Exploit textual modeling potential.

No as~ODNPRE

We demonstrated how Umple supports reuse anthgi of state machines. Finally, we
presented the Umple textual editor similar to editors available to other high level programming
languages, like autoomplete, codeassist, outline and error views. The Umple update site
enable<clipse users to update their Umple compiler whenever a neleatse is available.

72

Chapter 4: Syntax and semantics of composite state machines

The objective ofhis chapters to explore thecomplexities brought about by UML composite

statesandto outline the syntax and semantics of nesting and concurrency ¢anvép

highlight some of the outstanding issues dadhonstraté) mp | eds approach i n ha
issues We use UML 2.beta llspecificationg23] as ourreference (the latest publishatithe

time of writing). Howeverand asve demonstratm this chapterlJmple is not just another

implementation for UML specifications. Umple da#=sviae from the standard when wmd

objective justificationsSuch deviatioeaarenot uncommon, manyodeling and code generation

tools adopt dferent code generation styles, and occasionally, their own implementation flavor of

the semantics.

In addition, we explore the undefined semantics of Udmpositestate machines, and show
how some of such semantics can be unambiguously defined in Ublple.specifications do
not specify code generation pattertdmple, in this area, draws froralated work, and existing
modeling tools in weighing the options. Umplapproach in handing code generation from
composite state machine is novel. The apgr@wids explosion of the generated code and
maximizes reuse of simple state machine semantics.

It is the topic of the next chapter to illustrate how such semantics are implemented in code
generation. The next chapter presentsodified flattening appexhfor code generatigrand
demonstrates how the semantics issues discussed in this chapter are implemented.

This chapter is a deep investigatiohthe UML specificationghat relate to composite states. We
assume the reader is well familiar with theibagmantics of state machine presente@hapter
3: Syntax andemantics osimple satemachines

4.1 Syntax of Composite state machines

Encapsulation of state machines enables the modeling of complex behavior concisely. Every
conposite state machine can be flattened in one or more simple state mathaecal power

in composite state machines is conciseness. Our objective therefore is to enable the textual

modeling of composite state maclsrnie a way that maintains or enhasaen this conciseness.

AThe concept of hierarchical state machine 1is
i mpl ement i n a mai n s t[45k Bhexgrganmar fprsanplenstateg | angu a
machines was presented in the previous cha@texdter3: Syntax andemantics osimple sate

machine$. For the purpose of this chapter, we only present the grammar for composite state

73

machines.We start by presenting the syntax for nested state machines, and then present the
synta for concurrent state machines.

Nesting of state machinésdefined recursively. As shown in grammar rules R7 and R8, a state
has a state entity. A state entity may itself contain a state. This enables the syntax to define
unlimited levelsof nesting ¢ states.

Concurrency is defined using the symbolJhen a state entity is ||, Umple understands that the
next state to be defined is concurrent.

R7 | state
[stateName] { ([[comment]] | [FchangeType: -1M1?°10 stateEntity 1)*}

R8 | stateEntity -
[=-11 | transition NI entryOrEXxitAction 1NN activity 1] |
[state T]]

Umple uses nested brackets to represent nesting levels. The example belowstiéA0 be
a substate aftateAl which is itself is a substate stateA

stateA {
stateAl {
stateA2 {
}
}
}

The following showsoncurrent states.

state A {
state B {}

state C {}

}

In UML terminology,stateBand StateCare two concurrent regions of state A.

More examplesre presented in the next chapter.

4.2 Semantics of composite states machines

TheUML 2.4 Beta lIspecificationg23] leave significant roonfor undefined semantics (known
unknowns). More interestingly are the unstated undefined semantic®(um unknowns). As
wetread over the semantio§ composite states, we carefully expose thesedspects of UML
state machines and show how Umatiiressethem.

74

We start by exploring composite staaemanticdy usingthe example ifrigurel5as a
playgroundto layout our analysis of the semantics. The example is comprisedwenstates,
one nesting level, two concurrent regioasd 11 transitionsFor simplicitydp sake, the example
does not include any actions, guards, aivdies, but our analysis caasily extend to include
suchelements

Figure 15: Exploring the semantics of state rachines

We now analyze the transitionskiigure15 one by one in more depth

X1:

The state machinexits the source i mp |l e st at e désHnatioracormposéstate er s t he
0YO6. dneossly,ahe state machisea n st ate O6AO and state 0C6O6.

Using UML specificationt er mi no |l o d g f au hit rstedc samhitda@ompositg 6
state Y(page 570 in the UML specifications

X2:
This is an invalid transitionll h e s t aatcancugevitéstate, atle two regions must at all

times stay active.
We determind that this is an invalid transition, despites fact thatJML specificationscan be

interpreted in a wayotmake such transitions validfransition that crosses theluwlaries of

75

concurrent regions forces exits of all regions andmey of all regiongpage 591 in the UML
specificationy

X3:
This is a simple transition from state O0AO6 to

X4
This is anmvalid transition, similar to transition X2.

X5:
The state machine exitse sourcst at e 6 D6 and al so exits both r
the simpledestinatiorstate X.

X6:
This eits state Y, and angulstates, and enter the simptiestinatiors t a t @he OMLO .
specificationgall this adhigher level transitiod

According tothe UML specifications a higher level transition withtarget outside composite
stateforces exits of all substates and regioBsit if the target is within the composite state, then
no exits are forcedBut wha if the target is in a different regionkg X2 and X4 abovy® UML
does not rule out the validity of such transitions as discussed earlier.

X5 and X6, despite their apparent similarity, bear significant semantics differences. X5 can only
be triggeredvhileth e st at e ma c hhilenXé can Iz triggeradtwaile & Bng statew
combinations of the inner states of O6YO0.

Another issue wittX6 is the question ofvhich region is exited first? Imagine each of the two
regions has exit action A and exit@mn B. Which exit action isadled first? UML specifications
specifythat exiting the regions has to occur first before updating the state machinestatgve
(Page 571 in the UML specification®8ut if the state machine is being executed in a single
thread environment, the need to define which region is exited first becomes necessary.

Due to the linear nature of text, Umple will exit the region whose definition comes first in the
linear text. If the developer would like another behavior, he can siatiglythe sequence in the
Umple sourceThis is one aspect where the linear nature of text cfesentialambiguity in the
visual model.

X7:
Enter state 6D6, and Inusll24nerménalagy this it gtransidtont er s
to adirect substateThe UML specificationscalls thisexplicit entry(page 570 in the UML

76

specificationy as opposed timplicit entryin the case of X1wherethe transition into state A
and state C are implicit.

X8:
Similar to X3,thistriggers a transitomfom 6 D6 t o 06CO.

X9:
This isa simple transition between two simple statéhin a composite state machine

X10:
This transition triggerexitinga |l | i nner states of O0Yd, exiting
entering state B. Instantaneously, theestaichinealsoe nt er s st ate 06CO.

This is an undefined semantizgshder specificationin UML 2.4 Beta |l specificationThe
specifications do not mention the semantics of this transition.

X11:
This exitsa | | i nner ssHatdes t dd kerieysdtaantelexst to A6 and 6CO.
Similar to transition X10, this is an undwe#d transition in UML 2.4 specifications

4.3 Final States

AA final state is a special kind of state signifying that the enclosing region is congaletdd
2.4 Beta Il specificationsgge 547). When all regions in a state machine reach a final state, then
it means that the entire state machineoisipleted

According tothe UML specificationd 23] (page 547 on version 2.3), a final state has the
following corstraints: 1. No outgoing transitions; 2. has no regions; 3. has no reference to a sub
machine; 4. has no entry behavior; 5. has no exit behavior; 6. has no do activity béhapier.
interprets a completion of a state machine to mean deletion of theé. oBgtJmple class can
contain multiple state machines. A completion of any state machine in the class will delete the
entire object.

Similarly, in a composite state machine, completion of a reigiphiesthe completion of the
entire state machinand olject deletion follows The UML specifications state that completion
of a region does not mean the completion of the entire state madthiiseis an area where
Umple semantics differs froldML specification. We made the decision to delete the object
when a region is completed for the following reasons:

1. This makes the behavior of completion in the case of multiple state machines in the same
class workthe same aa state machine with concurrent regions.

77

2. Supporting the UML alternative requires the intiotion of the notion opartial completion
which adds complexitshat, we submit, will usually not be need®artial completion is the
concept that one region has completed, while one or more of its concurrent regions have not
yet completed. It would habeen necessary to track which regions have reached partial
completeness, so that if all of them reach partial completeness then the state machine as a
whole can become complete, and the object can be deleted. But there are many other
complexities: For exmple, if a transition is taken out of a state with concurrent regions, one
or more of which are partially complete, then the partial completeness status would need to
be cancelledBut upon returning to O6historydé this w

3. Any behawvor supported in the UMbpreferred semantcsan be supported by u
End states the following manner: Imagine there is the intent to transitidméd when Ed
statesslands2in two concurrent regions almthreached. The entry action inch end
states can set variald&dl, and2 to true and triggeevents1s2final Then there can be a
transitionsls2finalt o o f i n asur@unding etate nMadhiee, guarded by [endl &&
end2]

We illustrate Umple syntax and semanti€¢$immal states inlie following three cases.

4.3.1 Case 1: Final states in regions

Figurel6illustrates a composite state machine with two regions. Each regior-had atate.
Note that the keywor#inal is case sensitive.

class FinalState {
stateMachine {

M{
T2 ->C;
R1{
A {
T1 -> Final;
P}
I
R2{
B {
T4 -> Final;
}
}
}
C{T3 ->M}

}
}

Figure 16: Final states in regions

78

When T1 occurghe state machine becomes complete and Umple deletes the object. The UML
alternate interpretation would mean that the state magfoné have beepartially complete

since R2would have beeastill active. In that case, the state machimeuld still have been able
torespond to T4 and T2.

4.3.2 Case 2: Transition from a composite state to a simple Final state

Figurel7illustrates a transition from a composite state Eonal state.

M class FinalState {
stateMachine {
(R) W
A T1 -> Final;
() T1 R1{
................................. _.e A D
i |
B R2{

B {}
- / 1333

Figure 17: Transition from a composite state to a Final stat

When T1 occurs, Both R1 and R2 becomes instantaneously inactive. The state machine reaches
aFinal state and the state machine becoomspleted Object deletion follows.

4.3.3 Case 3: Final state in nested configuration

Figurel8illustrates final states in a nested configuration.

class FinalState {

stateMachine {
/Ll \ L1 {
L2 {
Lo t } t ->Final;
F } }
N / }

Figure 18: Final state in nested configuration

When the wate machine i L2 state andT occursthe transition to the Final state takes place
andthe whole state machirecomesompleted
In such a nested configuration, the exit action of L2 and L1 is called prior to object deletion.

79

4.4 Do Activities

UML specifies the do adtity to be the execution of a behavior that takes place while in a
specific state. The execution of the thread representing the do activity starts when the state is
entered following the execution of the entry action of that state, if such an action é&xikes

state is exited before the do activity is completed, the do activity is aborted prior to its
completion.

In Umple, any state can have an associated do actiVeéylemonstrate the behavior ad
activities in Umple using three cases; 1) Nestedigaration, 2) Concurrent configuration, 3) A
configuration where a single event triggering more than one transition in two separate state
machines within the same class.

44.1 Casel: Do activity in nested configuration

This case demonstrates nested statdstwio do activities at two different levels.

class DoActivity {
stateMachine {
A A
e ->C;
do {d1;}

}
B {
do {d2;}
C{ do{d3;} '}

}
}
}

Figure 19: Case 1: Do activityin nested configuration

The state machine starts in state A. At this state, Umple creates and executes the thread d1.
When the event e occurs, the thread dstappedand the transition to the inner state C takes
place. Upon this transition, Umple ates two threads, one for d2 and one for d3.

44.2 Case 2: Dactivities in concurrent configuration

This case demonstrates a concurrent state machine with two do activities executing in parallel.

80

class DoActivity {

e stateMachine {
- N e
->M;
ml | do{di;} M
A e | o] {e ->A;
m2 m1 {
. —) !
m2 {
D {do{d2;} }
P

Figure 20: Case 2: Do activities in concurrent configuration

In this case, the state machine starts irestat When the event e occurs, the transition to the
concurrent state Nbhkes place, and an implicit tratmsn into both C and D is firedrhis is
becausen both regions, m1 and m2, C and D are the startsttgtdefault. Once the state
machine enter€ and D, both threads d1 and d2 start executing.

If e occurs again while the concurrent state M is active, a highel transition to state A takes
place, exiting both states C and D. Upon this transitioth threads d1 and d2 atepped

44.3 Case 3: Dactivities in Multiple state machines within the same class

Umpl edbs support for multiple state machines i
which a developer can model parallel behavidsing concurrent state machines can be
simulated by usingnultiple state machines in the same classe &le belowlemonstrates

this use case.
class DoActivity {
stateMachineOne {
e A {
e ->B;
do {di;}

A
dofd1;}

}
B {}

e stateMachineTwo {
One {
One e ->Two;
o do{d 2} Two do {d2;}

}
Two {}

b}

Figure 21: Case 3: Do activities in Multiple state machines within the same class

81

This Umple class contains two state machisegeMachineOnandstateMachineTwo The

event e triggers twoansitions in the twgeparatstate machines from state A to state B in the
first state machine, and from state One to state Two in the second state machine. These two
transitions result in thetoppingof the two do activities, d1 and d2.

4.5 Outstanding issues

Our investigation of the latest UML composite states specifications uncovered a number of
outstanding issues. Some of these issuesrareik and stated in the UML specificatioshers
are notmentioned.

45.1 A higherlevel transition to composite states wh regions without start
state

X1 C]

Figure 22: A higher level transition to a composite state

Consider the highelevel transition X1 irFigure22. What is the semantics of such transition?

The UML specificationgliscusgwo alternate interpretatiorfpage 566 in the ML
specifications One interpretation idhat such a model is invalidh& second interpretation is
that this is a valid mael, and that the state macherers the composite states, but does not
enter any of the substatd$ie UML specificationsdo notprefereither interpretation.

However, this model becomes more problematic if one ofwbeegions happened to have a
start state. If such is a valid model, then what is the resulting state?

Umple resdves such ambiguitielsy implicitly making the firsistate the start statilence, the
transition X1 implicitly entesthe start state in the two regions.

82

45.2 Conflicting transitions

El

E1[G]

Figure 23: Conflicting transitions

A conflicting-transitions situation occurs when the same event fires two different transitions
(pages 581582 and 583n the UML specifications This can occur in unguarded transitions, or
in guarded transitions when the guard value is trigu¢e23). Conflicting transitions result in a
non-deterministicstate machine.

The UML specificationstateghat the state machine in such situation can choose a siibset
those transitions to fire; however, tbequence of the firing is hetraightforwardSome of the
conflicting transitions are resolved by complex algorithms. For examt@ennermost transition
always has a priority. But what if you have regions, which one has a ptloeity

Umpled Bnear nature resolves such ambiguity. The transition that comes first in the linear text is
alwayschoserfirst. This approach makes tstate machine deterministic.

45.3 Forks and Joinwith actions and guards

ne B — 1

Figure 24: Fork with actions and guards

UML state machine forks and joisannot have guards or actions associated with tReuare

24 is therefore an invalid UML modéConstrant 1 on mge B9 in the UML specifications

Umpl ebs forks and joins can hawawayidemticalosa and a
guard on aimple transitior(i.e. if the guard evaluates to false, none & tbrks transitions takes

placg. A fork action is executed before the transition takes place, and a join action is executed
afterthe exit actions of all substates and regions are executed.

83

454 Partial Forks and Joins

Figure 25: Partial fork

UML specifieshat region® and 4 are entered explicitfifigure25). The remaining two regions
(region 1 and 3) are entered implicitly. UML does not specify any semantic difference between
the explicit and implicit entrieage 571 in the ML specification3. Semantically, this is

identical toa higher level transition to the boundary of the composite state machine (

identical to X1 inFigurel15). There is a semantic difference only if the transition is pointing to
an inner state in region 2 and 4 that is notstlaget state.In situations where there is a transition

to two or more different inner states, with none being a default startsipfert for partial
transitions makes semantic sense. Umple, however, doesmentlysupportsuch a case

455 Event procasing in concurrent states

vy —
el/set(x B
~—

el/set(x D
~—

Figure 26: Event processing in concurrent regions

The same event cannot trigger two transitions; except if the transitions are in two separate
regions. Cons.i ¢igure26t Theze isecaneed ttnantbigubslyletennine the
firing sequence of the event.el

The UML specificationgncludeatransition selectioalgorithm(TSA) that resolve most, but

not dl, conflicting transitiongwe refer to semantics section page 581 and transition selection
algorithm on page 55. The TSA assigns priorities to transitions based on their relative nesting;
the highest priority is given to the inner most statie active state (iRigure26, state Y is the

84

active state).This algorithmworks well for transitions that are at different nesting levels, but
does not address the transitions similar to thoseguare26. Umple gives higher priority to the

region defined first in the linear natureitd textualnotation.

4.6 Large State Machine Example

We

have

SO

Experimentatiot

we

far
al

presented

r el aChapteél y

simpl e

SO

experi ment

wi t h

r el

ati

v el

larger al more complex state machines can be effectively represented textually in Umple.

f

S1B

/

Jentry .ﬂ?ﬁty setV(0)

p 83— - .
_— 51 Bf s2
. _'_l_///-"-._\\ Jexit Activity setV/(6)
S1A e3
A
e5 e

e5/v2()

~

Figure 27: Complex state machine model

(s3
pllv>4 Jexit Activity setV(3)

e2

Consider tke examplein Figure27 when more action code and guard conditionsmserted in
the visual representatipand model elements have more expressive namimgimage can
quickly become too cumbersorteemaintan. Another consideration is model refinements and
edits; as the model grows, additional model modifications entaiasing effort to adjust the
model layout and spacing.

Software engineers spend a considerable amount of their time modifying and maintaining models

[46]. One would expect that model maintenance to gabavhighetthanlinearrateas model
size increass. This is because increasing effort is needed to rearrange and position increasing

85

y

St
ST

numbes of model elements. We claim that Umple handles modifications more effectively
especially for | arger model s. SGEleapsa7. aspects of
Experimentation .

The equivalent model is illustrated in Listing 5 below using Umple notation.

86

class StateMachineTest {

Integer v= 0;
status {
S1 {
e2 ->S2C;
S1A {
el ->8S2;

}
S1B {
entry HsetvV(0);}
e5 ->Sl1A;
S1B1{
e3 ->S2B;
ed ->S1B2;

}
S1B2 {
el[v> 4] ->S3;
el[v< 1] ->S2;
e3 ->Sl1A;
e4 ->S1B1;
}
}
}
S2 {
exit /{setV(6);}
S2A{
e3->S1B1;
el->S2;
e4 ->8S1;
}
S2B {
e4d ->S2A;
}
S2C {
el ->/{setV(5);} S2B;
e2 ->S3;
e5 ->/{setV(2);} S3;
ed ->S2B;
}

}

S3 {
exit /{setvV(3);}
el ->S1A;
e2 ->S2;
e3 ->S2C;
e5 ->S1;

} o}

Listing 4 : Complex state machine model

87

In the visual representation of this model, we found it difficult to usg &xpressive event

names and we had to minimize the use of actions and guards to keep elements from overlapping.
Using Umple notation, it was relatively more effective to use full naming, actions and guards.
Textual features s uandh epd arceféa ovtea rei rmha naryd i &df ii o
changes.

4.7 Test Driven Development

The Umple platform and tools are developggsing a Test Driven approaf#7] which provices

for confidence that new development in Umplesioot result in regressioaiefects. The test
Driven Development (TDD) approach adopted in the developofdsmple is wellexplained in
For war d]sInthidisecsian,sve briefly describe the pro¢cgsang examples specific to
the Umple state machine features. We also detnate howthe TDD approach was instrumental
in the development of the composite state machines.

4.7.1 Umple Testing Process

The Umple compiler starts by parsing the input Umple code into tokens. The tokens are then
used to populate the metaodel, which is indrn used to drive a number of code generation
templates to generate the target language code. The gersystedcan then itself be tested to
make sure that Umple models generate code that behaves as expected. This testing process is
summarized irFigure28 below.

Parsing | | Meta-model | : Code 'Sample
Umple Code classes Generation Application

= Tokenization GRS Meta-model [l Syntax / _,\." Semantic
Tests "B Tests "B Code Tests L_ l/ Tasts

Figure 28: Testing Procesg2]

4.7.2 Parsing Umple code into tokens

Consider the following simple state machine.

88

class LightFixture
bulb
{
On {
push -> On;
}
}
}

The parseanalyzes the input text and identifies tokens. Parsing this simple state machine
generates the following tokens:

[classDefinition][name:LightFixture][stateMachine]
[inlineStateMachine][name:bulb][state][stateName:On]
[transition][event:push][stateName:On]

There are 80 test cases covering the parsing for state machines ranging from very simple state
machines to a larger more complex composite states. The complete listing of test cases is
published as part of the Google code project and can be foundfaliaieng location:

http://code.google.com/p/umple/source/browse/# svn/trunk/cruise.u
mple/test/cruise/umple/compiler/

4.7.3 Meta-model tests

The objective of this group of test cases is to ensure that Umple maintains an accurate internal
representation for the it model.The metamodelis tested to verifithat an input model, after
being correctly parsed, populates the right elements into an instance of theodetia-or the

simple example, we test the followiage populated correctly

- State machine name

- Thenumber of states within a state machine
- The first statename (start state name)

- The number of transitions.

- Events names

Listing 5 illustrates the JUnit code that tests these aspects of the model.

89

UmpleClass c = model .getUmpl eClass("LightFixture");
StateMachine sm = c.getStateMachine(0);
Assert. assertEquals ("bulb" , sm.getName());

Assert. assertEquals (1, sm.numberOfStates());
State state = sm.getState(0);
Assert. assertEquals ("On", state.getName());

Assert. assertEquals (1, state.numberOfTransitions());
Transition t1 = state.getTransition(0);
Assert. assertEquals ("push" , tl.getEvent().getName());

Listing 5: Meta-model test

The number of metenodel test cases is similar to the number of the ptesecases. This is
because for each model tested from a parsing perspective, is also tested frormaadeéta
population perspective.

4.7.4 Code generation tests

For each target language, we test to make sure that the generated code matches exactly our
expectéion. This can be done by writing by hand the expected generated code, and ilgn test
to make sure that what is actually generated matches our expectations. For our samplé model,
the target language is Javhe expectedenerated code is shownlirsting 6.

90

[*PLEASE DO NOT EDIT THIS CODE*/
/*This code was generated using the UMPLE *Umple Version* modeling language!*/

public class LightFixture

{

R —
/I MEMBER VARIABLES
R ———

/ILightFixture State Machines
enum Bulb {On}
private Bulb bulb;

R —
/l CONSTRUCTOR
R ——

public LightFixture()

setBulb(Bulb.On);

}
R ——

/I INTERFACE
Il - e
public String getBulbFullName()

{
String answer = bulb.toString();

return answer;

}

public Bulb getBulb()
return bulb;

public boolean push()

{

boolean wasEventProcessed = false;

Bulb aBulb = bulb;
switch (aBulb)

case On:
setBulb(Bulb.On);
wasEventProcessed = true;
break;

}

return wasEventProcessed:;

}
private void setBulb(Bulb aBulb)

bulb = aBulb;
}

public void delete()
¢

Listing 6: Generated Java code

91

Thereareabout 98 code generation test cases. All test cases follow the same pattern; test the
expected or desired output to the real output and make sure both are identical. These test cases
are blished as part of the Umple Google Code project and can be found at the following
location:

http://code.google.com/p/umple/source/browse/# svn/trunk/cruise.umple/t
est/cruise/umple/statemachine/implementation/

475 Generatedsystems tests

The final stage of téimg involves testing the behavior of systems generated by Umple. For
example, we feed the compiler the model showliguire27, and then test the generated system
using a sequence of evgnand make sure that the resulting estatthe expected state.

Composite state machmarebuilt by means of reusing the implementation of simple state
machines (se€hapter 5implementation of composite state machjnebhis testing approach
has enabled us to effently build the composite state machines in Umple feitihregression
defects.

Listing 7 illustrates a sample generated system test. The system shown below is fed as an input to
Umple and tested is performed dwtgenerated system

class GarageDoor
{
status {
Open {
buttonOrObstacle - > Closing; }
Closing {
buttonOrObstacle - > Opening;
reachBottom - > Closed;
}
Closed {
butto nOrObstacle - > Opening;}
Opening {
buttonOrObstacle - > HalfOpen;
reachTop - > Open;
}
HalfOpen { buttonOrObstacle - > Opening; }
}
}

Listing 7: Sample generated syem test

92

This example is for a simple garage door system. The testing of the generated system is
performed by feeding the system with a number of events, and checking whether the system is in
the expected state or not. For example, the system can be fledldlving events.

buttonOrObstacle
reachedButtom
buttonOrObstacle

reachTop

After these events, the expected state is Open. If the test case succeeds, we have more confidence
that Umple generated systems work as expected. If such a test case failg thesstigate
where the failure took place.

4.8 Summary

Concurrent and nested state machines are the main topic of this cWaptiest introduced

Umple syntax fothese Wethenpr esent ed t he semantics o,f Umpl e
which were drawno a large extent from the UML specifications. We also highlighted some of

the outstanding issues that exist in the latest UML specifications and demonstrated when such
inconsistencies occur. In some cases, Umple deviated from the UML specificationthereen

were convincing reasons. In other cases, Umple ironed out some of the undefined semantics.

Composite state machines tend to be larger and more cothplesimple machine§ve
demonstrated how Umgletextualrepresentationan effectively represetdrge and complex
state machine models. We also demonstrated thdiigeh development approach adopted in
Umple.

93

Chapter 5: Implementation of composite state machines

This chaptefocuses on code generation of composite state machine in Umple. éxglaaed

in Chapter4: Syntax andesmantics otomposite statenachinesthe code generation of

composite state machine in Umple is novel. Umple uses a flattening approach termed Gompress
Flatten Code Generation (CFC@®) this dnapter, we demonstrate this approach, and compare it

to other code generation approaches for composite state machines

5.1 Convention

Throughout this chapter, we adopt a convention to help illustrate the @F€€ss. In the
following sectionswe illustrate ow Umple flattens and generatbe implementation code.
Ump | e 6-modelseeFagurel2 Umple metamodelon pageb?) is unaware of composite
states.The CFCG process therefore adds additiorsestachine elements the metamodelto
simulate the behaviaf composite state machines, without adding additionalpdexity for the
code generation templateBhis approach allows us to make significant reuse of the
implementation of simple state nfaces. For example, a region in Umple is defined intdly
as a full state machine. This approach is explained in detail in this chapter.

Clearly, this approach is not language specific. However, we use Java as a representative
languageTo distinguish ktween Java and Umpie this chapterJava code will always appear
in grey boxes.

The code generation implementation approach presented in this chapter aims at generating code
for all possible, and valid, state and transition combinations, while mamgaiverelatively
concise size of the generated code. This approach is termed Coflptems Code Generation

(CFCG) summarized iRigure29.
Generate
.
A il o Insert
Read input Build the tmple state Add dummy Flatten state additional
Model Parse Tree machine? states machine actions

No

Populate
Meta-Model

Figure 29: CFCG Process

94

The CFCG process works as follewJmple reads the input model, and builds the parse tree.

The process distinguishes between two types of state machine models; a state machine that has at
least one nesting level, or one concurrent region, is considered a complex state machine. The
ratiorale is that such state machines require additional processing (compression and flattening) in
order to generate concise state machine code. The path for simple state machines is discussed in
AChapter3: Syntax andemantics osimple satemachines . Here, we | imit our
aspects of the CFCG process related to nested and concurrent states.

5.2 Composite state cases

We demonstrate the code generation of composite states by demonatraim@er otases. A
case is a compdsi state pattern. For exampleransition from an outer state to an inner state in
a nested states environmenbrecase Each of the following cases demonstrates one specific
aspect of a composite statmchine For each casaye shows items as follows:

1. The top left quadrant shows the input model visually.

2. The top right quadrant shows the input Umple model.

3. The lower left quadrant shows the flatted state machines visually.

4. The lower right quadrant shows the algorithm adopted for cedergtion.
5. The bottom shows an excerpt of the generated code.

Note that for each case, only an excerpt of the generatedsquesented. This is because the
analysis of each case focuses on a specific aspectiefgameration. Therefore, some questions
may be left unanswerddr some caseandshould be cleared in the cases to follow.

We use Javéor the code generation language. But arguments in this chapter can easily be
extended to any high level programming language.

For simplicity, the models illugated in this chaptagnore all types of actions, guards, and do
activities. The analysis, however, does address these model elelrggetsin this chapter, we
present expanded examples that include all types of actions.

5.2.1 Case 1: Transition to an innestate

The first case we address is a transitioariannerstate. In our example, the state machine starts
in state A. When the event 06ed occThisis, the tr
equivalent to transition from state A to B, andritfrom state B to state C.

Any exit action(s) from state Arecalled first, then transition actisnfollowed byanyentry
actiorsinto B, and finally, entry actiaginto C.

95

class TolnnerState {

stateMachine {

}
B

{
C{
P}

o 1. Flatten by generatirgjateMachinend

StateMachine StateMachineB
.—>‘ A B 2. SetstateMachingo A (the start state)

3. SetstateMachineBo Null (state B is not
active)

StateMachineB e

4. \When event e occurs:
[} Null C _ . _
1 |If state A is activesetstateMachineB

to stateMachineB.C

9 Return true to indicate the event was
processed.

/l Flattened state machines
enum StateMachine { A, B}
enum StateMachineB { Null, C }

/I Construction
public TolnnerState(){

setStateMachine(StateMachine.A);

if (s tateMachineB == null) { setStateMachineB(StateMachineB.Null); }
}

/[Event prcoessing
public boolean e(){

boolean wasEventProcessed = false;
switch (stateMachine) {
case A:
setStateMachineB(StateMachineB.C);
wasEventProcessed = true;
break;
}

Figure 30: Transition to an inner state

96

As shown in the abstracts of the generated code, Umple internally creates two state machines, the
first state machine has two states, A and B. The second state machirieaisd\C.

Upon construction the first state machingasto state A, and the second sahachine is
updated tcstateNull. As a matter of fact, the stauull is used to indicate thatateMachineBs
not active; i.e., thaigher levelstate machine i;m some other state than B (here it isiate A.

As with simple state machinethe eventandleris generated aa public method. This method
updateshe state machine state by callmgrivate methodetStateMachingB. This method
encapsulatesals to any actions and do activitiéhis encapsulation is very important to our
code generation approach for two reasons:

1. It makes all event processingethods relatively small in size; they become easier to read and
understand.

2. It simplifies the code gamation patters All event procesing methods look very similar,
and can therefore use the same code generation template.

This state machinenethod is very simple: it encapsulatdismethod calls when transitioning

from some state to another state. Bsbathis methodllows forarbitrarycomplexty in the

state machines the modeler can creidiere areanunlimited number of combinations of source

and destination states. For this reason, we will ignore the complexity of this method while we are
discusing these code generation cases. The specifics of the code generation for thisamethod
discussed in sectign 3in this chapter.

5.2.2 Case 2: Transition from an inner state

This case is similar to the previous case except lieatrainsition originates froaninner state to
an outer state.

97

class FromlinnerState {

stateMachine {
(B A ()
o B A
t e ->A;
}
}ro}

1. Flatten by generatirgiateMachinend

] StatdMachineB
stateMachine o

2. SetstateMachingo A (the start state)
.—>‘ A B 3. SetstateMachineBo Null (state B is not

active)

4. When event e occurs:

i e
StateMachineB M If state C is active, sstateMachineB

. Null C to Null.

9 SetstateMachingo A.

9 Return true to indicate the event was
processed.

Figure 31 Transition from an inner state

98

Il F lattened state machines
enum StateMachine { A, B }
enum StateMachineB { Null, C }

/I Construction
public FromInnerState()
{
setStateMachineB(StateMachineB.Null);
setStateMachine(StateMachine.A);

}

/I Event processing
public boolean e() {

boolean wasEventProcessed = false;
switch (stateMachineB) {
case C:
setStateMachine(StateMachine.A);
wasEventProcessed = true;
break;
}

Continued Figure 31: Transition from an inner state

The code generation for this caseiisi&r to the previous casehich is an objective we strive
to maintain in Umple; similar state machines should have similar code generation patterns.

The difference here is in the event processing teo d . Il n r esppehandikthet o t he
state mahine is in stat€, we updte the state machine stateMadrhis is also encapsulated in a
single method calietStateMachir(e.

The coming cases entail regions and concurrency. In our implementation, we consider every
region to be a fulfledged state nachine; a region malyave one or more state machine elements
of any type such as start state, end staterdinarystates and transitions. This view of regions
allows us to recursively define regions aut having to define a new region elemértiis s

similar toanested state, wheeestate can itself contairstate(a substate)

5.2.3 Case 3: Transition to a concurrent state

In this casdFigure 33, the state machine startsstate A’ Wh e n teldecurgthe nt 0
transition fromstate Ato the compeite state Mtakes place. Instantaneoudlige two regions C
and D become active

99

Umple creates internally three state machiseggMachinethat has two states, A and M;
SateMachineCthat has two statesull andC; and finallyStateMachineDthat has tw states
null andD.

Note that we use the dummy statdl in a consistent manner. If a state machine is in stdte
it means that the state machine is not active. In this case, if the state neahstate A, then
both regions C and D are setridl.

class ToConcurrentState {
stateMachine {

/M N\ A {
e ->M }
e C M {

D I
D {}
_ J 11}

1. Flatten by generatirgiateMachinend

] StateMachin€ andstateMachineD
stateMachine e

2. SetstateMachindo A (the start state)

3. SetstateMachin€ to Null.

] 4. SetstateMachineDo Null.
stateMachineC

4. When event e occurs:

[1 SetstateMachingo M.

i SetstateMachin€to C
stateMachineD e etstateMachine to

(] [

SetstateMachinelDo D.

=

Return true to indicate the event was
processed.

=

Figure 32 Transition to a concurrent state

100

/[Fla ttened state machines
enum StateMachine { A, M }
enum StateMachineC { Null, C}
enum StateMachineD { Null, D }

/I Construction

public ToConcurrentState() {
setStateMachineC(StateMachineC.Null);
setStateMachineD(StateMachineD.Null);
setStateMachine(S tateMachine.A);

}

I/l Event prcoessing

public boolean e() {

boolean wasEventProcessed = false;

switch (stateMachine) {
case A:
setStateMachine(StateMachine.M);
wasEventProcessed = true;
break;

}

return wasEventProcessed;

}

Continued Figure 32: Transition to a concurrent state

At construction, the state machiiseset tostate A. The two other state machinsmigviachineC
andstateMachineD are set to stataull.

Wh e n t h e oceursgehe statedmachine becomes in stat&hé method
setStateMachine(stateMaching.pdates the states for the two regions C and D and calls entry
and exit actions, if any.

Notice the level of similarity betweesvent processing methods in the previous cases, even
though the transition is ofdifferent nature. This similarity was achieved by means of hiding
the transition details in a single method call.

5.24 Case 4Transition from a concurrent state

This case demonstrata scenariavhen a transition out of a composite state is taking place. In
this example, the state machine startstéte M which has two concurrent regiordandD.
T h e eevleggers a transition out of the composite state.

101

class FromConcurrentState {
stateMachine {

M
/M \ {e->A;
. |<|3{}
D }
A {
\ 1}

1. Flatten by generatirgiateMachinend

) StateMachin€ andstateMachineD
stateMachine e

— 2. SetstateMachindo M (the start state)

3. SetstateMachin€ to C.

4. SetstateMachineDo D.

stateMachineC e
. 4. Whenevent e occurs:
o I C] [Null] 1 SetstateMachindo A.
stateMachineD o M SetstateMachine@o Null
T 1 SetstateMachineDo Null.
.—{ D] [Null]
1 Return true to indicate the event was

processed.

Figure 33 Transition from a concurrent state

102

/] exiting a composite state

public boolean exitM() {

boolean wasEventProcessed = false;
switch (stateMachin eC) {
case C:
setStateMachineC(StateMachineC.Null);
wasEventProcessed = true;
break;
}
switch (stateMachineD) {
case D:
setStateMachineD(StateMachineD.Null);
wasEventProcessed = true;
break;
}

Continued Figure 33: Transition from a concurrent state

When exiting a simple state, a single switch statement suffices. In our case, a concurrent state
with two regions requires two switch statements. The first switch statement checks if the region
C is active, ad if so, updates the state machin@udl using the methodetStateMachineC

which also handles any exit actionshe second switch statemerforms the same steps f

region D.

5.25 Case 5: Reflexive transition of a concurrent state

This case focuses ohd implementation of a reflexive transition. A reflexive transition is just
another transition whose source state and destinatitnastathe same.

A reflexive transition of a composite state with two concurrent regions behaves as follows:

1. Call exit ationsassociated with any state being exjtiedluding the composite state itself
Starting with the innermost state and working your way outward.

2. Exit all regions of the concurrent state;
3. Call transition actios if any;

4. Re-enter the concurrent state;

5. Reenter each concurrent region;

6. Call entry actions of any state being entered including the composite state itself.

103

According to the state machine semanticgjreg bothregionstakes place ahe same time
However, if you are executing the state maclina single threagd environment, one region

will be exited before the other. Due to the sequential natuitee Umple textual notatiotumple
determines that the region that is declared first will be exited first. To override such behavior,
one can simpire-order the regions so that region D is declared before region C. The same
applies for enteng a concurrent region in stefabove.

e class Reflexive {
stateMachine {
A {

- I e -> M
}
e
L :
D e ->M
L , c 0
D {}

P}

Figure 34: Reflexive transition of a concurrent state

104

stateMachine
o—(n] [m)e

stateMachineC e

PY Null C e

stateMachineD

e

>~

._.[Null] [D

De

1. Flatten by generatirggateMachinend
StateMachin€ andstateMachineD

2. SetstateMachingo A (the start state)
3. SetstateMachin€ to Null.

4. SetstateMachineDo Null.

5. When event e occurs:

 Set stateMachine to M, set
stateMachineC to C, and set
stateMachineD to D.

6. When event e occurs (triggering the
reflexive transition):

1 Call exitStateMachin@ method, which
exits all regions of M and exits M itsel

1 SetstateMachindgo M (re-entering
composite state)

1 SetstateMachine@o C

M SetstateMachineDo D.

1 Return true to indicate the event was

processed.

Continued Figure 34: Reflexive transition of a concurrent

105

/] Reflexive transition of a concurrent state

public boolean e() {

boolean wasEventProcessed = false;

switch (stateMachine) {
case A:
setStateMachine(StateMachine.M);
wasEventProcessed = true;
break;

case M:
exitStateMachine();
setStateMachine(StateMachine.M);

wasEventProcessed = true;
break;

}

return wasEventProcessed:;

}

Continued Figure 34: Reflexive transition of a concurrent state

Note the switch statement in the generated code. The first case handles the behavior when the
state machine is in state A. The second case hat#esituatiorwhen the state machine 1s i
state M. Our focus here is on the second case. The following takes place:

1. Calling the methocexitStateMachine(Wwhich encapsulates the logistics of exiting all
regions.

2. Reenteing the state M by calling the methesdtStateMachine(StateMachine.N()

3. Updatingthe Boolean variable to indicate that the event was processed

5.2.6 Case 6: Transition into an inner state in a concurrent region

This case explores a scenario when a transition to an inner state whichkitles iconcurrent
region. This case is speclacause even though the transition explicitly enters one region, the
second region must also be activated.

In our example belowhte st at e machine is initially 1in sta
state machine instantaneously enters the concutaetM and also instantaneously enters state

E. In that situation, the state machine is in state M, ancia EBoth regions C and D are

active.

106

g)
!
e
-
D
\ /
stateMachine
e
/_\

stateMachineC

(] (%)

stateMachineCC €
/\
.4{ Null] [E]
stateMachineD e

.—>‘ Null D

class ToConcurrentState {
stateMachine {
A{
e -> E;
}
M {
C{
E { entry /[inside_E; } }
}
|
D {
P}

1. Flatten by generatirgiateMachinend
StateMachin€, stateMachineCGind
stateMachineD

2. SetstateMachindo A (the start t@te)
3. SetstateMachin€ to Null.

4. setStateMachineCC to Null.

5. SetstateMachineDo Null.

5. When event e occurs:

Set stateMachine to M.

Set stateMachineC to C.

Set stateMachineCC to E.
Set stateMachineD to D.

Return true to indicate the event was
processed.

= = == =4 -2

Figure 35: Transition to an inner state in a concurrent

107

/I Flattened state machines

enum StateMachine { A, M }
enum StateMachineC { Null, C}
enum StateMachineCC { Null, E }
enum StateMachineD { Null, D }

/I Event processing
public boolean e() {

boolean wasEventProcessed = false;
switch (stateMa chine) {
case A:
setStateMachineCC(StateMachineCC.E);
wasEventProcessed = true;
break;
}
return wasEventProcessed;
}
private void setStateMachineCC(StateMachineCC aStateMachineCC) {

stateMachineCC = aStateMachineCC,;
if (stateMachineC != StateMachineC.C && aStateMachineCC !=
StateMachineCC.Null) { setStateMachineC(StateMachineC.C); }

/I entry action
switch(stateMachineCC) {
case E:
inside_E;
break;

Continued Figure 35: Transition to an inner state in a concurrent region

This case results in four internal state machines as shown in the generated codddiloave.
how the event processing method is very similar to other cases. This is because the public
me t h odelegatesdthe methodetStateMachineCthat callsthe entry actiorand updates
the state machiriestates.

5.2.7 Case 7: flansition from an inner state o concurrent region

This case is similar to the previous case. When the state machine is in the M state, agnt the ev
6ed occurs, the tr amhkidhtes iothe concuorent régioretakéesn ner st a
place.

108

class FromConcurrentState {
stateMachine {

- -) M {
e C o
C E{

D }
}
- / [
D {
}
A
P}
1. Flatten by generatirgiateMachinend
] e StateMachin€, stateMachineCGynd
stateMachine T~ stateMachineD
o '[M] [A] 2. SetstateMachingo M (the start state)
3. SetstateMachin€ to C.
e

stateMachineC 4. setateMachineCC to E.

o [c] [Null] 5. SetstateMachineDo D.

5. When event e occurs:

e

stateMachineCC 9 Call the method exitStateMachine()
[] which handles exiting substates and

calling actions.

M Set stateMachine to A.
stateMachineD

I Return true to indicate the event was

Figure 36: Transition from an inner state of a concurrent

109

/I Event processing

public boolean e(){
boolean wasEventProcessed = false;
switch (stateMachine) {
case M:
exitStateMachine();
setStateMachine(StateMachine.A);
wasEventProcessed = true;
break;

}

return wasEventProcessed;

}

Continued Figure 36: Transition from an inner state of a concurrent region

5.2.8 Case 8: Concurrent state is the start state

This case shows a situation when the state machine start state is a concurrditistata.
controversial modeWe discussed thisontroversy it he pr evi ous chhapter
higherlevel transition tacomposite statesith regions without start staie 0 n 8% The e
execution semantics of such a model can be interpreted in oneefthys;

1. The modelis invalid and Umple should throw a syntactic error.

2. The state machine becomes in state M, and enters the two concurrent regions, and enters
states S1 and S2.

3. The state machine becomes in state M, but does not enter any of the steeoircurrent
regions.

In Umple we adopalternative2, following the rule that when in a region, you must always be in
a substate of that region

110

stateMachine

stateMachin€

stateMachineCC

o]

stateMachineD

o]

stateMachineDD

(]

/I Construction

setStateMachineC(StateMachineC.Null);

class ConcurrentState {
stateMachine {

M {
C{
S1{}
}
I
D {
s2{}
by}

1. Flatten by generatirgiateMachinend
StateMachin€, stateMachineCC,
stateMachineDandstateMachineDD

2. SetstateMachingo M

3. SetstateMachin€ to C.
4. setStateMachineCC &1L
5. SetstateMachineDo D.

5. Set stateMachineDD to S2.

setStateMachineCC(StateMachineCC.Null);

setStateMachineD(StateMachineD.Null);

setS tateMachineDD(StateMachineDD.Null);

setStateMachine(StateMachine.M);

Figure 37: Concurrent state is the start state

As shown, the constructor initiates the state machine M and sets the start state for the two

regions.

111

5.3 State transition method

As we have demonstrated in the previous code generation cases, tmea@arariations of
state transitions. The following are the characteristics of such variations:

1. Is the source state a simple state or composite state?

2. If the sourcetate is composite, is it nested or concurrent?

3. Are there any stasdbeing exited that hee exit actions associated withen?
4. Does the transition have any transition action associated with it?

5. Is the destination statesimple state oa composite state?

6. Are there any entry actions associated with any state being entered?

The answers tthe questions above demonstrsoene of the complexity inhentin

i mpl ementing transitions. Even though Umpl eds
not to lookat or modify the generated code, we strived to make the generated code simple and

easy to understand.

It turns out that simpler code generation is also easier to implement. If we are able to make event
processing functions look similar, we will be ableus® simpler code generation templates to
implement them.

We were able to achieve this simplicity by abstracting common processing elements in any event
processing method and encapsulating the details in other methods (typically private methods)
that are alled internally. Itis worth mentioning that the abstraction process was achieved
incrementally by means of trial and error. As we were adding additional features into the state
machine, we hit roadblocks of highly complicated code generation templatégr Fhan

struggling with complicated code generation templates, we tried to take a few steps back, and
reconsider the implementatiaf code generation. Encapsulation of details worked well in many
situations. We will demonstrate by drilling down in #tate transition functioaf two of the

cases described before.

To demonstrate the complexity of implementing a transitama how Umple handles this
complexity we will reuse two of the cases presented earlier in this chapbethis analysis, we
assume that all transitions have both a guard G and an action A associated with\tbexiso
assume that every state has an entry and exit action.

112

5.3.1 Entering a composite state

This analysis is based on a modified state machine in case 3 above. The modifiechidiehgl
looks as follows

class ToConcurrentState {
stateMachine {

A {

e[G ->/{transition_action 0 3™}
M {

entry /{entering_M;}

C { cState {entry/ {entering_C 0} 11}

|
D { dState {entry/ {entering_D 0 1}

} o}

Listing 8: Entering a composite state

This model adds a guard, and two entry actions. The code that implements the transition from A

to M is as follows:

Stepl Public function to handle the event processing

public boolean e() {
boolean wasEventProcessed = false;
switch (stateMachine){
case A:
if (G) {
transition_action;
setStateMachine(StateMachine.M);

wasEventProcessed = true;
}
break;
}
return wasEventProcessed;
}
Listing 9: Step 1
The public method is named after the event

This method returns Booleanvalue to indicate whether the event has been processed or not.

Checking for the gudrtakes place within this method (as highlighted aboMeg. method also
calls the transition action right after checking for the value of the guadrdmethodthen
delegates the rest of the transition executioset&tateMachine(StateMaching.M

113

na

Step 2: setStateMachine(StateMachine.M)

This is a generic method that is used to update the state of any state machine.

private void setStateMachine(StateMachine aStateMachine) {
stateMachine = aStateMachine;
/I entry actions
switch(stateMachine) {
case M:
entering_M;
if (stateMachineC == StateMachineC.Null) {
setStateMachineC(StateMachineC.C); }
if (stateMachineD == StateMachineD.Null) {
setStateMachineD(StateMachineD.D);
}

break;

Listing 10: Step 2

This method will call any entry actions. In this casetering_Mis called.

We note here that the entry action is called prior to updating the state machine configurations (i.e

prior to updating the state machine attrés)t Therefore, if the entry action queries the state

machine, inaccurate values will be returned.

Notice that initially, both regioristates ee set to null (se€ase 3: Transition to a concurrent

stateon page99). This method checks if the region is in the null state, and if so, it will delegate
to setStateMachine@ndsetStateMachineBespectivelyFor brevity, we only analyze

setStateMachineC

114

Step 3 setStateMachineC(StateMachineC.C)

private void setStateMachineC(StateMachineC aStateMachineC) {
stateMachineC = aStateMachineC;
if (stateMachine != StateMachine.M && aStateMachineC != StateMachineC.Null)
{ setStateMachine(StateMachine.M); }

/I entry actions

switch(stateMa chineC) {
case C:
if (stateMachineCC == StateMachineCC.Null) {
setStateMachineCC(StateMachineCC.cState);
}

break;

Listing 11: Step 3

This method would call any entry amtis. In this case, there are no entry actions associated with
the stateMachineCThe method updatesdistate machine stated8tateby means of delegation
to StateMachineCC.cState

Step 4 setStateMachineCC(StateMachineCC.cState)

private void setStateMac hineCC(StateMachineCC aStateMachineCC) {
/I entry actions
switch(stateMachineCC) {
case cState:
entering_C;
break;

} o)

Listing 12 Step 4
This method finally calls the entry action for tt®tate

5.3.2 Exiting acomposite state

The steps for exiting a composite state machmewery similar to entering a composite state
machine. Again, this similarity makes it easier to follow the generated code, and makes the code
generation templates less complex. For brewy,show the method faxiting the composite

state M.

115

public boolean exitM() {

boolean wasEventProcessed = false;
switch (stateMachineC) {
case C:

exitStateMachineC();
setStateMachineC(StateMachineC.Null);

wasEventProcessed = t rue;
break;
}
switch (stateMachineD)
{
o}

Listing 13: Exiting the composite state

When exiting the composite state M, we also stateMachine@GndstateMachineDFor
brevity, we analyze the steps fexiting stateMachineC

Again, we delegate texitStateMachine@®r the handling of exit actions, if any, and for

updating the state machine statetice that when we exit the state machine, we set its state to
null.

5.4 Code generation templates

Umple uses Ja Emitter Templates (JET) technology to spewifiatthe generated code should
look like [48]. The JET templates are then compiled into Java code that generates time code
various languages, given an instance ofuhgple Metamodel

Each supported langga in Umple has its own JET templates. For Java alone,dhet88 JET
templates. The complete listing of Umple JET templates is part is available on the Umple Google
Code project. The templates supporting Java is available at this location:

http://cod e.google.com/p/umple/source/browse/# svn/trunk/UmpleToJava
The following table summarizes key templates and briefly describes their function.

116

Table 10: Key code generation templates

Template namé¢*.JET) Function

1 | members_AllIStaMachines Loops over all state machines and handles naming
state machine generated code.

2 | state_machine_Event Handles code for state machine events and events
handling methods.

3 | state_machine_Event_StartStoj Outputs the method for startingdstopping timers fo
imer time-based events.

4 | state_machine_Events_All High level template that caltbe
state_machine_Event template.

5 | state_machine_IsFinal Handles code for final states.
7 | state_machine_SetSimple Handles the code for setting simplatstmachines.
8 | state_machine_Set_ All High level template that loops over all state machin

For simple states the template calls
state_machine_setSimple, and calls
state_machine_Set.jet otherwise.

9 | state_machine_doActivity Handles code for do activis.

10 | state_machine_doActivityThreal Handles the generated code for threading in Java.

11 | state_machine_doActivity All | A high level template for handling do activities.

12 | state_machine_timedEvent_All | High level template for handling timed events.

5.5 Multiple state machines in the same class

An Umple class may contain an unbounded number of state machines. Those state machines may
interact with each other in a numbengdys. The following Umple modelisting 14)
illustrates wo examples of such interactions.

In this example, the class Phone has three state macahntgs SoundscreenLightand

Vibration. Initially, the ringer, thescreen light and vibration afeff. When a call is received, the
ringer sounds, the light turms, and thevibrationstarts vibratingThe model abstracts some of
the remaining common phone functionality.

117

class Phone {

Integer
Integer

t_ringer;
t_light;

ringerSound {
Off {
callReceived

}
Oon{

silentButton
pickUp
rejectCall
after(t_ringer)
}
}

screenLight {
Off {
callReceived

}
on{

callReceived
after(t_light)
}

Dimmed{
callReceived
after(t _light

}

}

vibration {
off {
callReceived

}

On{
turnOffVibration

o}

- > [{setVibration(Vibration.Off);} Off ;
->/ {

->0n;

-> Off ;

turnOffVibration() '
-> Off ;

Off ;

->0n;

-> [{rese tTimer();}
- > Dimmed,;

On;

->0n;
) - > Off

->0n;

-> Off ;

Listing 14: Phone state machine

There is a difference between the semantics of multiple state machines in the same class, and
concurrent regiosin a composite state machine. In a concurrent state machine, the two regions
are executing in parel, while in a multiple state machine in the same class, the state machines
are executing in sequence. The main benefit of supporting multiple state machines within the

118

same class is to allow every state machine to handle one aspect of the behaveobjeicth
This approach helps in separation of concerns and can enhance the usability ®&nabstate
machine inheritance.

55.1 Single event causing multiple transitions

Within a single state machine, an event can at most cause a single transition. Hameever,
because an Umple class may have more than one state machine, a single event may actually
trigger a transition in more than one state machine.

In Listing 14, thecallReceivecvent may cause a transition in the three staténimas within the
classPhone Umple recognizes this special event, and groups all the behavior to implement the
event handlingnto a single method.{sting 15).

public boolean callReceived() {
boolean wasEventProcessed = false;
switch (ringerSound) {
case Off:

Break;

}

switch (screenLight) {
case Off:

case On:

case Dimmed:

}
}

switch (vibration){
case Off:

}

return wasEventProcessed;

}

Listing 15: Single event causing multiple transitions

119

5.5.2 Action in a state machine triggers an event of another state machine

An action within a state machine (entry, exit, or transition) can trigger an event that may cause a
transition in another state machine. In tilgerSoundstate machine, when a call is rejected, a
transition to Off is triggered. This transition calls an event of another state machine that results in
another transition being triggered, a transition filomto Off in the Vibration state machine.

5.5.3 Action in a state machine updates the state of another state machine

An action within a state machine (entry, exit, or transition) can update the state of another state
machine. Consider this transition in our exmnp

pickUp - >/ {setVibration(Vibration.Off);} Off ;

When a call is picked up, a transition frén to Off takes place. The action on this transition
updates th&ibration state machine tOff. This is commonly called a side effect of a transition;
not a desirable feature of a state machine and developers must use it with care.

Notice that there is a difference between this acsetMibration(Vibration.Off);) and (urnoff
Vibration();). The first action updates the Vibration state machine witballihg any entry, exit

or transition actions within that state. However, the second action would result in execution of all
involved actions in the transition. This feature enables the users to easily override a state
machine behavior when needed.

5.6 Traditi onal flattening approach

The explosion phenomenon that occurs when flattening a composite state machine is explained
here[49]. To briefly demonstrate this phenomenon, we present a modified example from
Schaumon[b@s book

120

class TraditionalFlattening{
status {
R{
One{
e ->Two;
}
Two {
e ->Three;
R (e e }
.—»[One]—»[Two]—»[Three] Three { o
e ->0One;
_____________________ }
M ‘/ee e N I
o (s () (.
e ->B
}
B{
e ->C
}
C{
e ->A
}
}
}
}

Figure 38: explosion phenomenon

This composite state machine can be in nine possible configurations (A and 1, A and 2, A and 3,
Band 1,Band 2,Band 3, Cand 1, C and 2, C and 3).foheréo flatten this state machine,

the resulting simple state must have at least states (Al, A2, A3, B1, B2, B3, C1, C2, C3j.

there was another region with another 3 states, the total numttetteriedstates jumps to 27

(3*3*3).

There are searal research streams that are investigating the ability to generate code from state
machines without the need for flattening the state machine to awsidalable exponential

growth in the generated coffel, 52]. However, these approaches typicallyagspractical
considerations for the generataatle; as we explored in this chaptene consideration for

example is that similar state machine models should genemstarsiode.

In the case of 3*3Kigure38), usingUmple resits in eight states. Not a significant improvement
over the standard flattening that results in nine states. But in the case of 3*3*3, the standard
flattening results in 27 states, and Umple generates 12 skatese 39 summarzes the

comparison for the number of generated states for Umple and the traditional flattening approach.
The figure shows the number of generated states for the simple case of a state machine with 3

121

states, a concurrent state with 3*3 states, and ugdo@urrent state machine with five
concurrent regions with 3 states each.

300

250
W
g /
® 200
v
5 / —Traditional
« 150
[}]
; /
5 100 /
= / Umple plus dummy

50 / states

; | —Ump|e
O 1

Composite state model

Figure 39: comparison of flattening approaches

As shown in the figure, thieaditional flattening approach quickly outnumbers the number of
states generatleby Umple, even when the null dummy states are included.

5.7 Comparison of code generation approaches

In this section, we compare our CFCG code generation approt@t wfa commercial tool
(Rhapsody) and a research tool whose autfiiez et al)claim anovel approach of generating
efficient and compact code for composite states.

Rhapsody implements state machines using the muttiptes pattern and creates objects that
represents states upfront; i.e, as soon as the state machine becomes activebjetiestay in
memory as long as the state machine is executing. Rhapsody uses a switch statement and a
helper class to implement the state machine behavior. We discuss the pros and cons of multiple
class patteari n s e Multiplesclassipattem o n 3 a g e

The research tool proposed by Niaz also uses multiptes pattern where each state is

implemented in a separate class. However, objects are not created upfront, rather, objects are
createdand deleted at run time. This makes the expected performance of this tool to be better

than RhapsodyNiazG approach implements composite state machines by using object

composition and delegation.n our comparison, we H¥Bdhat a cr it

122

relies onthenumber of lines of code, number of bytes, and number of classes. For the base
comparison, we consider the examplé&igure40.

In many cases, we were unable to compare our approach to other toolsediscisestion

fiCode Generation from State Machides o n 3lplaegoethe fact that many of the available
commercial and research tools do not support composite states in a way complete enough to
allow this comparison. For example, Bridgepo[@8] does not allow substates or guards.

Wa s o ws k i 0[$1] evgduatesaca@de deneration for composite statesafibus on

efficiency of the execution time of the generatede. Our focus is on the number of lines of the
generated code.

-

))
C > D
~— ~—
R =
))
E J F

k%/

Figure 40: Composite state comparison example

The example is comprisexf two simple states, and one state with two concurrent regions.

Table 11: code generation comparison

Generated code Rhapsody | Niaz, I.A | Umple generated Code| Umple
Number of lines 675 250 125 8
Number of bytes 24,270 6,420 5,010 197
Number of classes 7 11 1 1

As shown, the number of lines of code is significantly lower in the case of Umple (reduction of
about 50% as compared withadgis approach). The number of bytes are less in the case of
Umple (a reduction of about 22%).

5.7.1 Generated code growth analysis

The comparison in the previous section does not tell us how the generated code grows as the
input model grows. We have conductedestimate of the code generation by studying the
generated code. We measured a factor of growth for every code section (a function of a code
blocks) by analyzing how the code would grow when the number of states grows. For example,

123

an event is translatedto a publicevent handlemethod (i.e one line of code). Two events are
translated into two lines of code (a growth factor of 1).

This study results in a growth analysis summarizegigare41.

AQ000
a 20000 /
=
S / —— Rhapsody
5 20000
@ / e [2
'E Laaan -£7£_ Javafrom
g — F.______....--- Umple
0 - — Umple
®l K10 K20 x50
Model Slze

Figure 41 Factor of growth analysis

The study looks at models growth at a factor of 10, 20, and 50. The study compares Rhapsody,
Niaz I.A, Umple generated Java, and Umple source models. This study implies that CFCG code
generation approach results in significeaduction in code generation for larger models.

5.8 Summary

The majority of the modeling tools we surveyed did not handle code generation for composite
state machines, maybe on the premise that any composite state machine model can be flattened
into a simplestate machine model. We quickly realized that we can further distinguish Umple by
a careful analysis of all possible combinations of states and transitidhs. course of this

analysis, we identified some undefined semantics in the UML specificatanaettried to

handle in Umple.

We named ouapproachforcodg e ner at i ol @Cdmmr €pgde Generati ol
approach avoids explosions of composite state machines by internally creating dummy states and
transitions. This chapter demonstrated thisehacode generation approach by demonstrating a
number of 6code generation casesb6. -flattech case
code generation technique.

We also presented, in great detail, how we implement the state transition method, and how
Umple supports having an unbounded number of state machines in the same class. Finally, we
compared Umple to two other modeling toolhis comparison indicates that Umple syntax is
concise and tends to generate relatively fewer lines of code.

124

Chapter 6: A Grounded theory study of Umple

This chapter presents a grounded theory study to gather knowledge about perceptions of the
usability of the Umple languag@&his is a longrunning study that we conductedths state
machinecapabilityin Umple wasbeingd evel oped. The ob]jfeeddadkfore i s t
existingaspects of Umple dbey werebeing developed and use the findings to guide future
development. Hence, a significant portion of the stadiyressethe work done prior to state

machine being implemented in Umplenamely associations and attributes.

Grounded theory studies do not have hypothddather, the analysis of the data is expected to

bring about theories about the domain being investigated. Our study does natiyge¢hesis
ether.Ourgoal s t hat by studying Umple early adopter
experimental development so that the resulting product can achieve the benefits claimed.

We start by first exploring the domain of using grounded th@dy) studies irthe area of
software engineeringThis survey helps us understand how GT have been used in the software
engineering domain. Wiken present the grounded theory study of Umple users.

6.1 Survey of grounded theory in software engineering

Grounded theory@T) is a systematic qualitative research methodology, originating in the social
sciences, and emphasizes the generation of theory from qualitative data in the process of
conducting research. Grounded theory, in its original form, was proposed by GlabStraass

in 1967[54]. However, it was not until 1993 that we could find the first significant grounded
theory work applied in software engineerjiadp]. Since that dte, more researchers have

adopted the process and the GT has been supported by promising results. There is a limited, but
increasing, body of literature reporting the application of grounded theory in software
engineering (SE) disciplines. Nevertheldss, applications in SE are still very limited, mostly
likely due to the complexities of conducting GT methodology in SE. The GT methodology, we
argue, requires adaptation for successful employment in the SE world. The contribution of this
chapteris to povide metacodes that can be used to drive the ihd¢@ling phase of GT. We

also provide an analysis of existing GT applications in software engineering and the
characteristics of such applicatgas exhibited in the existing literature.

This sections organized as follows\e first present a brief history of grounded theory and its
application in the software engineering arena. Then, we present the methodology we adopt to
survey, categorize, and analyze GT coding. The subsequent three sectiensglie=rature

review and the meteodes thematically organized by the application of grounded theory in agile
development, distributed development, and requiremenisegrgng. The remainder of this

125

sectionpresents some GT characteristics that aeeip to applications in software engineering
and an overview of where GT has been successful and where challenges exist in the application
of GT in software engineering.

6.1.1Background and History

Grounded Theory is a systematic qualitative resear¢hadelogy that emphasizes the

generation of theory from data. Grounded theory operates almost in a reverse fashion to the
traditional scientific method. Rather than proposing a hypothesis and gathering data to support
it, data collection is pursued firstithout any preconception§his adhoc characteristic is of

great interest from our perspective because i
without having to have any hypothesiBhe process continues by marking key points in the data
withaseri es of O0codesdé, which are then grouped i

categories become the basis of a theory. The coding process is typically performed in two steps,
initial then focused coding. The categorization process is norneddlyred to asxial coding

Grounded theory emerged as a research methodology in the 1960s, during a time when

sociological research practices were particularly reliant on quantitative methodologies. In 1967,
Glaser and Strauss coined the termgroundedtht y i n t heir book AThe Di
T h e o[b6} dhe term refers to the idea of a theory that is generatédbgrounded in an

iterative process of analysis and sampling of qualitative dateigal from concrete settings,

such as interviews, participant observation, and archival research.

The roots of this methodology can be traced bat¢kdavork of Wilhelm Diltheywho argued

against the pursuit of causal explanations at the expense diststgbunderstanding. Grounded
theory methodology can also be traced back to the symbolic interactionist perspective of Herbert
Blumer[57]. The term "symbolic interaction” refers to the peculiar and distinctivectea of
interaction as it takes place between human beings. The peculiarity consists in the fact that
human beings interpret or "define" each other's actions instead of merely reacting to each other's
actions.

Since GTsd i ncept igoundednheadrythas became inaeasinglycpopilarine s |,
information systems as a research methodology. This is evident by the growing literature on the
methodology and its applications. The first publicati@wereable to identify as an

application of gronded theory in the area of software engineering was the work by Calloway

and Ariav[58] and Toraskef59]in 1991. Inthese publications, the researchers described how
theyadopted grounded theory in understanding how managerial users evaluate their decision
support systems.

The first international journal publication of a grounded theory application in software
engineering is that of Orlikowski in 19985]. In this work, the researcher presents findings of a
study into the adoption of CASE tools. The researcher justified the use of grounded theory as a

126

research methodology on the basipsocesstbt it pro

elements as well as the action of key players associated with organizational change elements that
are often omitted in ISnformation Systemss t u d%5f s 0

More recently, Baskerville and Pri¢teje [60] employed grounded theocpmbined withaction
research to enhance the rigor and traceability in the thesrglopment part of their work.

Action research is a reflective process of progressive problengded by individuals working

with professionals to improve the way they address issues and solve problems. Other work has
employed grounded theory to initiate more focused data collection actjgips

Grounded theory applications have extended to other arenas within software engineering. While
the literature is limited, the most prominent discipline of grounded theory work is in software
development methodologies, as evident in the quantity of publisbddimthis discipline. Out

of the 60 research papers identified as applications of grounded theory in software engineering,
25 addressed software development methodology. Othatistiplines with significant bodies

of GT research include requiremestggineering and distributed software development

practices.

We believe that GT is a research methodology particularly useful for software engineering
research for reasons that include:

- Software development is a human intensive process; software is usathbys with
complex interaction and usage pattemisere quantitative evidence is honexistent or
difficult to formulate,

- GT provides an effective approach for qualitative validation.

The low and slow adoption of GT methodology in SE is due to a nuoflfectors. GT

originated in the social sciences, and since its adoption in SE, there is little guidance on how to
employ the methodology, in addition, it is not clear what characteristics of the GT needs
adaptation to better fit the nature of SE reseaf®bme researchers in the software engineering

field are not familiar with the GT methodology, and can frequently be skeptical of its
effectiveness. In addition, as our survey highlights, the number of researchers that have reported
using GT is small wltih contributes to barriers of more GT adoption.

6.1.2Discussion of Sources

Surveying the application of grounded theory in software engineering turned out to be more
challenging than anticipated. Grounded theory work is published in a large varietynafigou

and conference proceedings. A significant portion of grounded theory research can be located in
journals dealing with empirical studies. Nevertheless, a growing number of grounded theory
projects deal with development processes, requirements engmetooling, and development
practices. Such work is typically published in journals not related to empirical studies. What

127

follows is a review of the methodology used to identify candidate GT sources to ensure that we
covered the full gamete of papens the subject.

We located more than 60 published papers that explicitly reported the use of grounded theory in
the analysis of their data in an area related to software engineering. While the determination of
the use of grounded theory as a researchaodetiogy was relatively clear, the scope that defines
what software engineering is, is more challenging. Hence, we found a thematic presentation was
most appropriate. The surveyed resources are organized under three main themes; agile
development, distibuted development, and requirements engineering. These three disciplines
contain a major portion of the grounded theory work within software engineering.

Some grounded theory approaches recommend starting with high level codes to drive theory
building[62]. This is particularly challenging due to the small amount of literature available on
the application of GT in software engineering. In order to help SE researchers, we collected all
codes and categories that weeported in each GT application theme. We then analyzed those
codes in a GT approach to create what wergatikcodes or codes of codes. We first collected

all codes and sub codes from the grounded theory papers in each theme separately. Those codes
were then analyzed, rearranged, and merged to create a final shallow hierarchyaidesta

Each metacode is associated with tags that summarize a larger number of codes and sub codes
as exhibited in the literature within a specific theme. It is oujechure that the meteodes can

be of value to future applications of GT in the software engineering themes presented in this
chapter they can function as high level codes that drive theory building in these areas.

6.1.3Grounded Theory in Agile DevelopmeMethodologies

We were able to identify 32 published papers that applied grounded theory to study software
development methodologies. Of thesmereported studying agile methodologies.

Agile software development refers to a group of methodologiesiiaaé and promote principles
such as development with short iterations, teamwork, collaboration, and process adaptability
throughout the lifecycle of the projecf63]. The roots of agile development can be traced back
to 1974 when an adaptive software development process was introduced by Efapnds
However, the definition of modern agile development processes evoltleelli890s. For
example, eXtreme Programming was formatlyoduced in 199665].

Out of all surveyed papeminereported research into agile methodologies using grounded
theory. This number reflects the fact that agile development processes are a relatively new and
evolving concept. In addition, applicat® of grounded theory work in software development
methodology in general are limit¢d1]. The earliest work that reported a grounded theory
methodology in an agile development process setting is that of KahkiweAbrahamssdb6].

128

Some of the most prominent work is that of Coleman ¢68].67, 68] who report on how

software process and software process improvement (SPI) is applied in the practice of software
develppment. Their study focused on a number of indigenous Irish software companies at
various stages of development. In the first phase of the study, they performed four interviews in
three different companies; each interview contained 53 questions. kcthedsgphase, they
investigated 11 more companies, performing interviews of about an hour each. They initially
performed focused and axial coding, which resulted in three themes and 17 core categories. The
theory they present nrceepdr ersoeandt smaap fiolrlnu sotfr aétei xnpg
pitfalls a software product company could face and how others have avoided or resolved them.
Their findings also included supporting evidence and justifications regarding the low level of
adoption of CMM/CMMI and ISO 9000 by Irish software companies. They cited cost of
implementation and maintenance, the added burden on the development efforts, and increased
documentation and bureaucracy as the main factors behind the low adoption of the SPI
initiatives. For example, they report that smaller companies believed SPI would negatively

impact their creativity and flexibility.

Another example of use of the grounded theory approach in an agile environment involved
exploring the socigpsychological characteristicd agile teams and to learn about the type of
experiences acquired in such software development §g&8mn30] The findings contribute a
better understanding of the link between agile firas and positive team outcomes such as
motivation and cohesion.

Meta-codes for Agile development methodologies

We collected codes and sub codes from the 9 studies that adopted GT to investigate agile
development methodology. We constructed the foetks by analyzing 50 codes, and 206 sub
codes. Metaodes and tags are summarizedale12.

Table 122 Meta codes for agile development methodologies

No. | Agile development Meta - Tags / Description
codes

1 Characteristics/Practices of communications, processes, negotiations, skills, team, commitment,
agile development management, implementation, knowledge sharing trust, software builds,

team rooms, workspaces, meetings.

2 Challenges of agile Requirements, communications, people oriented process, formality, team
development cohesion

3 Company characteristics Domain, number of projects, market sector.

4 Project Characteristics Duration, complexity, development sites, customer locations, team size.

6 Lessons Tools, expertise, culture, trust, training, commitment, resource management.

Table12 presents a summary of the metades we constructed in the agile methodology theme.
Each metacode repremnts a large number of codes and-salles, samples of which are
presented iTable1l2. Here we provide a description for each of the roetdes.

129

Characteristics/Practices of agile developmentThis metacodeis used to group codes and

sub codes that refer to a characteristic specific to an agile software development project. This
includes the nature of communication within teams, knowledge sharing, and the characteristics
of trust within a development teamanagement, and the client. It also includes team rooms,
and the nature of the workspaces and meetings.

Challenges of agile developmentThis code groups challenges in agile development related to
requirement gathering activities, requirement stabitigture and frequency of changes in
requirements, communicatiorayout thepeopleoriented rather than processented control,

lack of formality, and lack of team cohesion.

Company characteristics Companyrelated codes were reported in two studiesis Tifeta
code groups tags related to the company domain, the number of agile projects in execution and in
total, as well as the targeted market sector.

Project characteristics. This metacode groups all codes related to the agile project
characteristics.This includes duration of the projects on average and individually, complexity of
the project as perceived, and objectively, the number of development sites and development team
size.

Lessons. This metacode collects all lessons learned that are relategite development.

Lessons learned were related to the tools being utilized, the importance of expertise within the
team, the culture role in the success of projects, and the role of trust. In addition, it includes the
importance of formal training, drthe commitment of every team member to the success of the
agile activities, and the importance of proactive resource management.

6.1.4Grounded Theory and Geographically Distributed Development (GDD)

Out of our surveyed literature, we identifisevenstudies on Geographically Distributed

Development (GDD) using GT. GDD, also known as Distributed Software Development (DSD),
has grown to be a c¢ommqd7i] [Pespiecthe linbted number ofo d ay 6 s
pubications, GDD seems to be a fertile discipline for grounded theory application for the

following reasons:

- GDD has grown, and is still growing, exponentially in the last defézle
- GDD brings about additional compigy to any development process.

- There is a wealth of data sources that can be analyzed using grounded theory analysis.
For example, communications in GDD are typically written communications (Email, chat
sessions) that can be easily recorded over an@steperiod of time with little effort and
little disruptions to existing business activities. Such data are typically absent in normal
settings, or require significant effort to facilitate data collection.

130

There are situations when a surveyed GT workested both GDD and agile methodology at
the same time, as we show in this section. In such situations, we actually classified the paper
under both themes, including their codes andcudes in the analysis and construction of meta
codes in both themes.

GDD becomes extensively complex and challenging when an agile method is dd@pted

Agile processes depend heavily on information, short informal meetings, and-face
communications. Rame$i2] has reported a grounded theory approach that analyses data from
three different organizations, attempting to answer the question whether distributed software
development can be agile. Ramesh has identified a number of chakpegég to distributed

agile development processes, nevertheless, he concluded that distributed and agile can be
combined.

Layman[71] pursued a different approach. Layman studied a successful distributed agile
devdopment project in the U.S and Czech Republic in an attempt to uncover the characteristics

of these successful projects. They collected the data from archives of emails, as well as semi
structured interviews. Quantitative data (number of source fils foreexample) was
supplementary to their qualitative dat a. The
of four success factors for a distributed XP methodology; the facilitation of communication by

the management, short asynchronous communic&iaps, identifiable customer authority to

resolve requirement related issues, and a high process visibility.

It is typical for grounded theory research activities to take place in real life situations, by
interviewing or collecting data from real projectHowever, one study4] reported grounded

theory methodology using student subjects comprising 21 virtual teams collaborating in the
completion of a given task. In this study, the researcher aimed at uncdvewrdjstributed

projects are managed and executed. The study concludes with characteristics of managing a
distributed project, as well as proposing a model for distributed project management. A similar
work [75] alsoutilized students in a study of distributed development using student participants.
The study relied on the analysis of electronic communications collected during the performance
of a distributed development task by the students.

Managing requirements edistributed development setting presents unique challenges.
Requirements engineering is a communicatidansive and dynamic task. When stakeholders

are geographically distributed, requirement engineering tasks become even more complex.

Damian and 2arghi [76] present their field study work that investigates requirements
engineering challenges introduced byitest akehol
organization. Their goal is to examine requiremenigineering practice in global software
development and formulate recommendations for improvements. In the next section, we discuss
grounded theorpased requirements engineering research irdmtnbuted projects.

131

Meta-codes for geographically distrited development

Out of thesevenidentified GT studies on GDD, we analyzed the codes extractedsixom
studies. One study did not provide adequate reporting on their codes and subcodes. We
collected 31 codes, and 95 sub codes resultiegevenmetacodes presented below Trable

13.

Table 13 Meta-codes for geographically distributed development

No. | GDD Meta-codes Tags / Description
1 | Communication communication patterns (generatingadeconfirmation,
consensus, conflict, humor, attitude), positive and negative
2 Coordination Time zone (delay in responses) collaboration, Involvement
3 | Adaptation social,work, technological, conflict resolution, lateral thinkin
4 Company backgrouh | company size, maturity levels, existing development
approaches, companyos cul't
5 Stakeholders project under studyds stak
experience, etc..
6 Collaboration simple emails, advanced collaborationhieclogies
technologies
7 Requirements inadequate communication, knowledge management, culty
challenges due to diversity, time difference
distance
8 Requirements activities elicitation, prioritization, negotiation, validation, examining
current system, managing wmtainty specification
9 Involvement of users | achieving appropriate participation of system
users and field personnel,
10 | Trust checking project status, concern about a member doing his
task, trust built progressively,
11 | Delay Sources and nature délay, perceived causes, delay mitigat
actions

Table13 presents a summary of the metades we constructed in the geographically distributed
development theme. Each metade represents a large number ofesdnd swocodes, samples

of which are presented in the table above. Here we provide an analysis and description for each
of the metacodes.

GDD projectsare after all software development progesb it was expected to see a number of
codes that cabe found in a typical software engineering project. Communications in a GDD
project plays a more prominent role, and it was found in almost every set of codes analyzed.
Coordination and adaptation metades are closely associated with the GDD natutkeof

project. That code represented codes related to time zone issues, collaboration, level of
involvement, and social and cultural issues. All these aspects are related to the geographical

132

